Search Results

Now showing 1 - 4 of 4
  • Item
    Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere
    (Washington, DC : NAS, 2018) Ditas, Jeannine; Ma, Nan; Zhang, Yuxuan; Assmann, Denise; Neumaier, Marco; Riede, Hella; Karu, Einar; Williams, Jonathan; Scharffe, Dieter; Wang, Qiaoqiao; Saturno, Jorge; Schwarz, Joshua P.; Katich, Joseph M.; McMeeking, Gavin R.; Zahn, Andreas; Hermann, Markus; Brenninkmeijer, Carl A. M.; Andreae, Meinrat O.; Pöschl, Ulrich; Su, Hang; Cheng, Yafang
    Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m−3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m−3) with more than 100-fold enhanced peak values (up to ∼720 ng·m−3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h−1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.
  • Item
    Significant radiative impact of volcanic aerosol in the lowermost stratosphere
    (London : Nature Publishing Group, 2015) Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A.M.; Hermann, Markus; van Velthoven, Peter F.J.; Zahn, Andreas
    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.
  • Item
    Climate Feedback on Aerosol Emission and Atmospheric Concentrations
    (Heidelberg : Springer, 2018) Tegen, Ina; Schepanski, Kerstin
    Purpose of Review: Climate factors may considerably impact on natural aerosol emissions and atmospheric distributions. The interdependencies of processes within the aerosol-climate system may thus cause climate feedbacks that need to be understood. Recent findings on various major climate impacts on aerosol distributions are summarized in this review. Recent Findings: While generally atmospheric aerosol distributions are influenced by changes in precipitation, atmospheric mixing, and ventilation due to circulation changes, emissions from natural aerosol sources strongly depend on climate factors like wind speed, temperature, and vegetation. Aerosol sources affected by climate are desert sources of mineral dust, marine aerosol sources, and vegetation sources of biomass burning aerosol and biogenic volatile organic gases that are precursors for secondary aerosol formation. Different climate impacts on aerosol distributions may offset each other. Summary: In regions where anthropogenic aerosol loads decrease, the impacts of climate on natural aerosol variabilities will increase. Detailed knowledge of processes controlling aerosol concentrations is required for credible future projections of aerosol distributions.
  • Item
    Aerosol layer heights above Tajikistan during the CADEX campaign
    (Les Ulis : EDP Sciences, 2019) Hofer, Julian; Althausen, Dietrich; Abdullaev, Sabur F.; Nazarov, Bakhron I.; Makhmudov, Abduvosit N.; Baars, Holger; Engelmann, Ronny; Ansmann, Albert
    Mineral dust influences climate and weather by direct and indirect effects. Surrounded by dust sources, Central Asian countries are affected by atmospheric mineral dust on a regular basis. Climate change effects like glacier retreat and desertification are prevalent in Central Asia as well. Therefore, the role of dust in the climate system in Central Asia needs to be clarified and quantified. During the Central Asian Dust EXperiment (CADEX) first lidar observations in Tajikistan were conducted. Long-term vertically resolved aerosol measurements were performed with the multiwavelength polarization Raman lidar PollyXT from March 2015 to August 2016 in Dushanbe, Tajikistan. In this contribution, a climatology of the aerosol layer heights is presented, which was retrieved from the 18-month lidar measurements. Automatic detection based on backscatter coefficient thresholds were used to retrieve the aerosol layer heights and yield similar layer heights as manual layer height determination. The significant aerosol layer height has a maximum in summer and a minimum in winter. The highest layers occurred in spring, but in summer uppermost layer heights above 6 km AGL are frequent, too. © 2019 The Authors, published by EDP Sciences.