Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Tracing the Snowball bifurcation of aquaplanets through time reveals a fundamental shift in critical-state dynamics

2023, Feulner, Georg, Bukenberger, Mona, Petri, Stefan

The instability with respect to global glaciation is a fundamental property of the climate system caused by the positive ice-albedo feedback. The atmospheric concentration of carbon dioxide (CO2) at which this Snowball bifurcation occurs changes through Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective but also constitutes an important prerequisite for understanding past Snowball Earth episodes, as well as the conditions for habitability on Earth and other planets. Earlier studies are limited to investigations with very simple climate models for Earth's entire history or studies of individual time slices carried out with a variety of more complex models and for different boundary conditions, making comparisons and the identification of secular changes difficult. Here, we use a coupled climate model of intermediate complexity to trace the Snowball bifurcation of an aquaplanet through Earth's history in one consistent model framework. We find that the critical CO2 concentration decreased more or less logarithmically with increasing solar luminosity until about 1 billion years ago but dropped faster in more recent times. Furthermore, there was a fundamental shift in the dynamics of the critical state about 1.2 billion years ago (unrelated to the downturn in critical CO2 values), driven by the interplay of wind-driven sea-ice dynamics and the surface energy balance: for critical states at low solar luminosities, the ice line lies in the Ferrel cell, stabilised by the poleward winds despite moderate meridional temperature gradients under strong greenhouse warming. For critical states at high solar luminosities, on the other hand, the ice line rests at the Hadley cell boundary, stabilised against the equatorward winds by steep meridional temperature gradients resulting from the increased solar energy input at lower latitudes and stronger Ekman transport in the ocean.

Loading...
Thumbnail Image
Item

Low-stabilisation scenarios and technologies for carbon capture and sequestration

2009, Bauer, N., Edenhofer, O., Leimbach, M.

Endogenous technology scenarios for meeting low stabilization CO2 targets are derived in this study and assessed regarding emission reductions and mitigation costs. The aim is to indentify the most important technology options for achieving low stabilization targets. The significance of an option is indicated by its achieved emission reduction and the mitigation cost increase, if this option were not available. Quantitative results are computed using a global multi-regional hard-linked hybrid model that integrates the economy, the energy sector and the climate system. The model endogenously determines the optimal deployment of technologies subject to a constraint on climate change. The alternative options in the energy sector comprise the most important mitigation technologies: renewables, biomass, nuclear, carbon capture and sequestration (CCS), and biomass with CCS as well as energy efficiency improvements. The results indicate that the availability of CCS technologies and espec. biomass with CCS is highly desirable for achieving low stabilization goals at low costs. The option of nuclear energy is different: although it could play an important role in the primary energy mix, mitigation costs would only mildly increase, if it could not be expanded. Therefore, in order to promote prudent climate change mitigation goals, support of CCS technologies reduces the costs and-thus-is desirable from a social point of view. © 2009 Elsevier Ltd. All rights reserved.