Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites

2019, Gusovius, H.-J., Lühr, C., Hoffmann, T., Pecenka, R., Idler, C.

A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.

Loading...
Thumbnail Image
Item

MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids

2020, Özdemir, Zeynep Güven, Daşdan, Dolunay Şakar, Kavak, Pelin, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte, SüngüMısırlıoğlu, Banu

In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

2017, Luo, Jinji, Cerretti, Giacomo, Krause, Beate, Zhang, Long, Otto, Thomas, Jenschke, Wolfgang, Ullrich, Mathias, Tremel, Wolfgang, Voit, Brigitte, Pötschke, Petra

The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.

Loading...
Thumbnail Image
Item

The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, DIC Curiosities and Shifted Deformation Mechanisms

2021, Viljoen, David, Fischer, Matthieu, Kühnert, Ines, Labuschagné, Johan

The interactive effects between additives and weld lines, which are frequent injection-moulding defects, were studied in high-density polyethylene (HDPE) and compared to weld-line-free reference samples. These materials were formulated around a D- and I-optimal experimental design, based on a quadratic Scheffé polynomial model, with up to 60 wt% calcium carbonate, masterbatched carbon black and a stabiliser package. Where reasonable and appropriate, the behaviours of the systems were modelled using statistical techniques, for a better understanding of the underlying trends. The characterisations were performed through the use of conventional tensile testing, digital image correlation (DIC) and scanning electron microscopy (SEM). A range of complex interactive effects were found during conventional tensile testing, with DIC used to better understand and explain these effects. SEM is used to better understand the failure mechanics of some of these systems through fractography, particularly regarding particle effects. A measure is introduced to quantify the deviation of the pre-yield deformation curve from the ideal elastic case. Novel analysis of DIC results is proposed, through the use of combined time-series plots and measures quantifying the extent and localisation of peak deformation. Through this, it could be found that strong shifts in the deformation mechanisms occur as a function of formulation and the presence/absence of weld lines. Primarily, changes are noted in the onset of continuous inter- and intralamellar slip and cavitation/fibrillation, seen through the onset of localised deformation and stress-whitening.

Loading...
Thumbnail Image
Item

Carboxylated nitrile butadiene rubber/hybrid filler composites

2012, Mousa, A., Heinrich, G., Simon, F., Wagenknecht, U., Stöckelhuber, K.-W., Dweiri, R.

The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS) of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH). Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR) to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR) of the composites. The degree of curing ΔM (maximum torque-minimum torque) as a function of hybrid filler as derived from moving die rheometer (MDR) is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA) is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM).

Loading...
Thumbnail Image
Item

Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue

2016, Fischer, Sarah C.L., Levy, Oren, Kroner, Elmar, Hensel, René, Karp, Jeffrey M., Arzt, Eduard

Patterned microstructures represent a potential approach for improving current wound closure strategies. Microstructures can be fabricated by multiple techniques including replica molding of soft polymer-based materials. However, polymeric microstructures often lack the required shear resistance with tissue needed for wound closure. In this work, scalable microstructures made from composites based on polydimethylsiloxane (PDMS) were explored to enhance the shear resistance with wet tissue. To achieve suitable mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles into the pre-polymer and by coating PE particle reinforced substrates with parylene. The reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-fold enhancement in Young׳s modulus over pure PDMS. Shear tests of mushroom-shaped microstructures (diameter 450 µm, length 1 mm) against chicken muscle tissue demonstrate first correlations that will be useful for future design of wound closure or stabilization implants.

Loading...
Thumbnail Image
Item

Grain refinement and deformation mechanisms in room temperature severe plastic deformed Mg-AZ31

2013, Knauer, E., Freudenberger, J., Marr, T., Kauffmann, A., Schultz, L.

A Ti-AZ31 composite was severely plastically deformed by rotary swaging at room temperature up to a logarithmic deformation strain of 2.98. A value far beyond the forming limit of pure AZ31 when being equivalently deformed. It is observed, that the microstructure evolution in Mg-AZ31 is strongly influenced by twinning. At low strains the [formula presented] twin systems lead to fragmentation of the initial grains. Inside the primary twins, grain refinement takes place by dynamic recrystallization, dynamic recovery and twinning. These mechanisms lead to a final grain size of ≈ 1 μm, while a strong centered ring fibre texture is evolved.

Loading...
Thumbnail Image
Item

Predicting the dominating factors during heat transfer in magnetocaloric composite wires

2020, Krautz, M., Beyer, L., Funk, A., Waske, A., Weise, B., Freudenberger, J., Gottschall, T.

Magnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core.

Loading...
Thumbnail Image
Item

Modelling and Experimental Investigation of Hexagonal Nacre-Like Structure Stiffness

2020, Rouhana, Rami, Stommel, Markus

A highly ordered, hexagonal, nacre-like composite stiffness is investigated using experiments, simulations, and analytical models. Polystyrene and polyurethane are selected as materials for the manufactured specimens using laser cutting and hand lamination. A simulation geometry is made by digital microscope measurements of the specimens, and a simulation is conducted using material data based on component material characterization. Available analytical models are compared to the experimental results, and a more accurate model is derived specifically for highly ordered hexagonal tablets with relatively large in-plane gaps. The influence of hexagonal width, cut width, and interface thickness are analyzed using the hexagonal nacre-like composite stiffness model. The proposed analytical model converges within 1% with the simulation and experimental results

Loading...
Thumbnail Image
Item

Statistical Analysis of Mechanical Stressing in Short Fiber Reinforced Composites by Means of Statistical and Representative Volume Elements

2021, Breuer, Kevin, Spickenheuer, Axel, Stommel, Markus

Analyzing representative volume elements with the finite element method is one method to calculate the local stress at the microscale of short fiber reinforced plastics. It can be shown with Monte-Carlo simulations that the stress distribution depends on the local arrangement of the fibers and is therefore unique for each fiber constellation. In this contribution the stress distribution and the effective composite properties are examined as a function of the considered volume of the representative volume elements. Moreover, the influence of locally varying fiber volume fraction is examined, using statistical volume elements. The results show that the average stress probability distribution is independent of the number of fibers and independent of local fluctuation of the fiber volume fraction. Furthermore, it is derived from the stress distributions that the statistical deviation of the effective composite properties should not be neglected in the case of injection molded components. A finite element analysis indicates that the macroscopic stresses and strains on component level are significantly influenced by local, statistical fluctuation of the composite properties.