Search Results

Now showing 1 - 3 of 3
  • Item
    Persistent identification of instruments
    (London : Ubiquity Press, 2020) Stocker, M.; Darroch, L.; Krahl, R.; Habermann, T.; Devaraju, A.; Schwardmann, U.; D’onofrio, C.; Häggström, I.
    Instruments play an essential role in creating research data. Given the importance of instruments and associated metadata to the assessment of data quality and data reuse, globally unique, persistent and resolvable identification of instruments is crucial. The Research Data Alliance Working Group Persistent Identification of Instruments (PIDINST) developed a community-driven solution for persistent identification of instruments which we present and discuss in this paper. Based on an analysis of 10 use cases, PIDINST developed a metadata schema and prototyped schema implementation with DataCite and ePIC as representative persistent identifier infrastructures and with HZB (Helmholtz-Zentrum Berlin für Materialien und Energie) and BODC (British Oceanographic Data Centre) as representative institutional instrument providers. These implementations demonstrate the viability of the proposed solution in practice. Moving forward, PIDINST will further catalyse adoption and consolidate the schema by addressing new stakeholder requirements.
  • Item
    The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era
    (Les Ulis : EDP Sciences, 2021) Georgoulis, Manolis K.; Bloomfield, D. Shaun; Piana, Michele; Massone, Anna Maria; Soldati, Marco; Gallagher, Peter T.; Pariat, Etienne; Vilmer, Nicole; Buchlin, Eric; Baudin, Frederic; Csillaghy, Andre; Sathiapal, Hanna; Jackson, David R.; Alingery, Pablo; Benvenuto, Federico; Campi, Cristina; Florios, Konstantinos; Gontikakis, Constantinos; Guennou, Chloe; Guerra, Jordan A.; Kontogiannis, Ioannis; Latorre, Vittorio; Murray, Sophie A.; Park, Sung-Hong; Stachelski, Samuel von; Torbica, Aleksandar; Vischi, Dario; Worsfold, Mark
    The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.
  • Item
    The SciQA Scientific Question Answering Benchmark for Scholarly Knowledge
    (London : Nature Publishing Group, 2023) Auer, Sören; Barone, Dante A.C.; Bartz, Cassiano; Cortes, Eduardo G.; Jaradeh, Mohamad Yaser; Karras, Oliver; Koubarakis, Manolis; Mouromtsev, Dmitry; Pliukhin, Dmitrii; Radyush, Daniil; Shilin, Ivan; Stocker, Markus; Tsalapati, Eleni
    Knowledge graphs have gained increasing popularity in the last decade in science and technology. However, knowledge graphs are currently relatively simple to moderate semantic structures that are mainly a collection of factual statements. Question answering (QA) benchmarks and systems were so far mainly geared towards encyclopedic knowledge graphs such as DBpedia and Wikidata. We present SciQA a scientific QA benchmark for scholarly knowledge. The benchmark leverages the Open Research Knowledge Graph (ORKG) which includes almost 170,000 resources describing research contributions of almost 15,000 scholarly articles from 709 research fields. Following a bottom-up methodology, we first manually developed a set of 100 complex questions that can be answered using this knowledge graph. Furthermore, we devised eight question templates with which we automatically generated further 2465 questions, that can also be answered with the ORKG. The questions cover a range of research fields and question types and are translated into corresponding SPARQL queries over the ORKG. Based on two preliminary evaluations, we show that the resulting SciQA benchmark represents a challenging task for next-generation QA systems. This task is part of the open competitions at the 22nd International Semantic Web Conference 2023 as the Scholarly Question Answering over Linked Data (QALD) Challenge.