Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Sharp phase transition for Cox percolation

2022, Hirsch, Christian, Jahnel, Benedikt, Muirhead, Stephen

We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence, satisfies a local boundedness condition and can be constructed from a discrete iid random field, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction that allows us to compare different notions of influence.

Loading...
Thumbnail Image
Item

SINR percolation for Cox point processes with random powers

2019, Jahnel, Benedikt, Tóbiás, András

Signal-to-interference plus noise ratio (SINR) percolation is an infinite-range dependent variant of continuum percolation modeling connections in a telecommunication network. Unlike in earlier works, in the present paper the transmitted signal powers of the devices of the network are assumed random, i.i.d. and possibly unbounded. Additionally, we assume that the devices form a stationary Cox point process, i.e., a Poisson point process with stationary random intensity measure, in two or higher dimensions. We present the following main results. First, under suitable moment conditions on the signal powers and the intensity measure, there is percolation in the SINR graph given that the device density is high and interferences are sufficiently reduced, but not vanishing. Second, if the interference cancellation factor γ and the SINR threshold τ satisfy γ ≥ 1/(2τ), then there is no percolation for any intensity parameter. Third, in the case of a Poisson point process with constant powers, for any intensity parameter that is supercritical for the underlying Gilbert graph, the SINR graph also percolates with some small but positive interference cancellation factor.

Loading...
Thumbnail Image
Item

The typical cell in anisotropic tessellations

2018, Hirsch, Christian, Jahnel, Benedikt, Hinsen, Alexander, Cali, Elie

The typical cell is a key concept for stochastic-geometry based modeling in communication networks, as it provides a rigorous framework for describing properties of a serving zone associated with a component selected at random in a large network. We consider a setting where network components are located on a large street network. While earlier investigations were restricted to street systems without preferred directions, in this paper we derive the distribution of the typical cell in Manhattan-type systems characterized by a pattern of horizontal and vertical streets. We explain how the mathematical description can be turned into a simulation algorithm and provide numerical results uncovering novel effects when compared to classical isotropic networks.

Loading...
Thumbnail Image
Item

Continuum percolation in a nonstabilizing environment

2022, Jahnel, Benedikt, Jhawar, Sanjoy Kumar, Vu, Anh Duc

We prove nontrivial phase transitions for continuum percolation in a Boolean model based on a Cox point process with nonstabilizing directing measure. The directing measure, which can be seen as a stationary random environment for the classical Poisson--Boolean model, is given by a planar rectangular Poisson line process. This Manhattan grid type construction features long-range dependencies in the environment, leading to absence of a sharp phase transition for the associated Cox--Boolean model. Our proofs rest on discretization arguments and a comparison to percolation on randomly stretched lattices established in [MR2116736].

Loading...
Thumbnail Image
Item

When do wireless network signals appear Poisson?

2014, Keeler, Paul, Ross, Nathan, Xia, Aihua

We consider the point process of signal strengths from transmitters in a wireless network observed from a fixed position under models with general signal path loss and random propagation effects. We show via coupling arguments that under general conditions this point process of signal strengths can be well-approximated by an inhomogeneous Poisson or a Cox point processes on the positive real line. We also provide some bounds on the total variation distance between the laws of these point processes and both Poisson and Cox point processes. Under appropriate conditions, these results support the use of a spatial Poisson point process for the underlying positioning of transmitters in models of wireless networks, even if in reality the positioning does not appear Poisson. We apply the results to a number of models with popular choices for positioning of transmitters, path loss functions, and distributions of propagation effec

Loading...
Thumbnail Image
Item

Sharp phase transition for Cox percolation

2022, Hirsch, Christian, Jahnel, Benedikt, Muirhead, Stephen

We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence and satisfies a local boundedness condition, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction.