Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Energy and symmetry of dd excitations in undoped layered cuprates measured By Cu L3 resonant inelastic x-ray scattering

2011, Moretti Sala, M., Bisogni, V., Aruta, C., Balestrino, G., Berger, H., Brookes, N.B., De Luca, G.M., Di Castro, D., Grioni, M., Guarise, M., Medaglia, P.G., Miletto, Granozio, F., Minola, M., Perna, P., Radovic, M., Salluzzo, M., Schmitt, T., Zhou, K.J., Braicovich, L., Ghiringhelli, G.

We measured the high-resolution Cu L3 edge resonant inelastic x-ray scattering (RIXS) of undoped cuprates La2CuO4, Sr2CuO2Cl2, CaCuO2 and NdBa 2Cu3O6. The dominant spectral features were assigned to dd excitations and we extensively studied their polarization and scattering geometry dependence. In a pure ionic picture, we calculated the theoretical cross sections for those excitations and used these to fit the experimental data with excellent agreement. By doing so, we were able to determine the energy and symmetry of Cu-3d states for the four systems with unprecedented accuracy and confidence. The values of the effective parameters could be obtained for the singleion crystal field model but not for a simple two-dimensional cluster model. The firm experimental assessment of dd excitation energies carries important consequences for the physics of high-Tc superconductors. On the one hand, we found that the minimum energy of orbital excitation is always ≥ 1.4 eV, i.e. well above the mid-infrared spectral range, which leaves to magnetic excitations (up to 300 meV) a major role in Cooper pairing in cuprates. On the other hand, it has become possible to study quantitatively the effective influence of dd excitations on the superconducting gap in cuprates.

Loading...
Thumbnail Image
Item

The morphology of silver nanoparticles prepared by enzyme-induced reduction

2012, Schneidewind, H., Schüler, T., Strelau, K.K., Weber, K., Cialla, D., Diegel, M., Mattheis, R., Berger, A., Möller, R., Popp, J.

Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silvernanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.

Loading...
Thumbnail Image
Item

A semiconductor laser system for the production of antihydrogen

2012, Müllers, A., Böttner, S., Kolbe, D., Diehl, T., Koglbauer, A., Sattler, M., Stappel, M., Steinborn, R., Walz, J., Gabrielse, G.

Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Laser excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-exchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the results from the excitation of caesium atoms to Rydberg states within the strong magnetic fields in the ATRAP apparatus.