Search Results

Now showing 1 - 1 of 1
  • Item
    Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Kantner, Markus; Koprucki, Thomas
    At cryogenic temperatures the electron-hole plasma in semiconductor materials becomes strongly degenerate, leading to very sharp internal layers, extreme depletion in intrinsic domains and strong nonlinear diffusion. As a result, the numerical simulation of the drift-diffusion system suffers from serious convergence issues using standard methods. We consider a one-dimensional p-i-n diode to illustrate these problems and present a simple temperature-embedding scheme to enable the numerical simulation at cryogenic temperatures. The method is suitable for forward-biased devices as they appear e.g. in optoelectronic applications.