Search Results

Now showing 1 - 4 of 4
  • Item
    Femtosecond X-ray diffraction from nanolayered oxides
    (Amsterdam : Elsevier, 2010) Von Korff Schmising, C.; Harpoeth, A.; Zhavoronkov, N.; Woerner, M.; Elsaesser, T.; Bargheer, M.; Schmidbauer, M.; Vrejoiu, I.; Hesse, D.; Alexe, M.
    Femtosecond X-ray scattering offers the opportunity to investigate reversible lattice dynamics with unprecedented accuracy. We show in a prototype experiment how strain propagation modifies the functionality of a ferroelectric system on its intrinsic time scale.
  • Item
    Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds
    (Cambridge : RSC Publ., 2020) He, Ran; Zhu, Taishan; Wang, Yumei; Wolff, Ulrike; Jaud, Jean-Christophe; Sotnikov, Andrei; Potapov, Pavel; Wolf, Daniel; Ying, Pingjun; Wood, Max; Liu, Zhenhui; Feng, Le; Perez Rodriguez, Nicolas; Snyder, G. Jeffrey; Grossman, Jeffrey C.; Nielsch, Kornelius; Schierning, Gabi
    Half-Heusler (HH) compounds are among the most promising thermoelectric (TE) materials for large-scale applications due to their superior properties such as high power factor, excellent mechanical and thermal reliability, and non-toxicity. Their only drawback is the remaining-high lattice thermal conductivity. Various mechanisms were reported with claimed effectiveness to enhance the phonon scattering of HH compounds including grain-boundary scattering, phase separation, and electron–phonon interaction. In this work, however, we show that point-defect scattering has been the dominant mechanism for phonon scattering other than the intrinsic phonon–phonon interaction for ZrCoSb and possibly many other HH compounds. Induced by the charge-compensation effect, the formation of Co/4d Frenkel point defects is responsible for the drastic reduction of lattice thermal conductivity in ZrCoSb1−xSnx. Our work systematically depicts the phonon scattering profile of HH compounds and illuminates subsequent material optimizations.
  • Item
    Rotation of fullerene molecules in the crystal lattice of fullerene/porphyrin: C60 and Sc3N@C80
    (Cambridge : RSC, 2021) Hao, Yajuan; Wang, Yaofeng; Spree, Lukas; Liu, Fupin
    The dynamics of molecules in the solid-state is important to understand their physicochemical properties. The temperature-dependent dynamics of Sc3N@C80 and C60 in the crystal lattice containing nickel octaethylporphyrin (NiOEP) was studied with variable temperature X-ray diffraction (VT-XRD). The results indicate that the fullerene cages (both C60 and C80) in the crystal lattice present stronger libration than the co-crystallized NiOEP in the temperature range of 100–280 K. In contrast to the fullerene cage, the Sc3N cluster shows pronounced rotation roughly perpendicular to the plane of the co-crystallized NiOEP molecule driven by temperature. The obtained temperature dependent dynamic behavior of the Sc3N cluster is different from that of Ho2LuN and Lu3N, regardless of their rather similar structure, indicating the effect of the mass and size of the metal ions.
  • Item
    Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation
    (Washington, DC [u.a.] : Assoc., 2018) Maehrlein, Sebastian F.; Radu, Ilie; Maldonado, Pablo; Paarmann, Alexander; Gensch, Michael; Kalashnikova, Alexandra M.; Pisarev, Roman V.; Wolf, Martin; Oppeneer, Peter M.; Barker, Joseph; Kampfrath, Tobias
    To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. After ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis, and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnet’s two spin sublattices and to a previously inaccessible ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.