Search Results

Now showing 1 - 2 of 2
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds
    (Oxford : Oxford Univ. Press, 2023) Hahn, Veronika
    Laccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure–activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.