Search Results

Now showing 1 - 2 of 2
  • Item
    Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes
    (London : Biomed Central, 2022) Chen, Yaping; Yoh, Hao Zhe; Shokouhi, Ali-Reza; Murayama, Takahide; Suu, Koukou; Morikawa, Yasuhiro; Voelcker, Nicolas H.; Elnathan, Roey
    Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
  • Item
    Possibilities and Limitations of Photoactivatable Cytochalasin D for the Spatiotemporal Regulation of Actin Dynamics
    (Washington, D.C. : American Chemical Society, 2020) Nair, Roshna V.; Zhao, Shifang; Terriac, Emmanuel; Lautenschläger, Franziska; Hetmanski, Joseph H.R.; Caswell, Patrick T.; del Campo, Aranzazu
    The study of the actin cytoskeleton and related cellular processes requires tools to specifically interfere with actin dynamics in living cell cultures, ideally with spatiotemporal control and compatible with real time imaging. A phototriggerable derivative of the actin disruptor Cytochalasin D (CytoD) is described and tested here. It includes a nitroveratryloxycarbonyl (Nvoc) photoremovable protecting group (PPG) at the hydroxyl group at C7 of CytoD. The attachment of the PPG renders Nvoc-CytoD temporarily inactive, and enables light-dosed delivery of the active drug CytoD to living cells. This article presents the full structural and physicochemical characterization, the toxicity analysis. It is complemented with biological tests to show the time scales (seconds) and spatial resolution (cellular level) achievable with a UV source in a regular microscopy setup