Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Effect of minor gallium addition on corrosion, passivity, and antibacterial behaviour of novel β-type Ti–Nb alloys

2023, Akman, Adnan, Alberta, Ludovico Andrea, Giraldo-Osorno, Paula Milena, Turner, Adam Benedict, Hantusch, Martin, Palmquist, Anders, Trobos, Margarita, Calin, Mariana, Gebert, Annett

Metastable Ti–Nb alloys are promising bone-implant materials due to improved mechanical biofunctionality and biocompatibility. To overcome increasing bacterial infection risk, alloying with antibacterial elements is a promising strategy. This study investigates the effect of minor gallium (Ga) additions (4, 8 wt% Ga) to as-cast and solution-treated β-type Ti–45Nb-based alloy (96(Ti–45Nb)-4Ga, 92(Ti–45Nb)-8Ga (wt.%)) on corrosion and passive film properties, as well as cytocompatibility and antibacterial activity. The electrochemical properties were evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses in phosphate-buffered saline (PBS). X-ray photoelectron spectroscopy (XPS) was performed to analyze the chemical composition of passive films. Early adhesion and viability of macrophages and Staphylococcus aureus were assessed by nucleocounting and colony-forming unit counting, respectively. The results showed that high corrosion resistance and passive film properties of Ti–45Nb are retained and even slightly improved with Ga. EIS results revealed that Ga addition improves the passive film resistance. XPS measurements of 92(Ti–45Nb)-8Ga show that the passive film contains Ti-, Nb- and Ga-based oxides, implying the formation of mixed (Ti–Nb-Ga) oxides. In addition, marginal Ga ion release rate was detected under free corrosion conditions. Therefore, it can be assumed that Ga species may contribute to passive film formation on Ga-containing alloys. The 92(Ti–45Nb)-8Ga elicited an antibacterial effect against S. aureus compared to cp-Ti at 4 h. Moreover, Ga-containing alloys showed good cytocompatibility with THP-1 macrophages at 24 h. In conclusion, it was demonstrated that Ga additions to Ti–45Nb are beneficial to corrosion resistance and showed promising initial host and bacterial interactions.

Loading...
Thumbnail Image
Item

Adhesive and Self-Healing Polyurethanes with Tunable Multifunctionality

2022, Zhou, Lei, Zhang, Lu, Li, Peichuang, Maitz, Manfred F., Wang, Kebing, Shang, Tengda, Dai, Sheng, Fu, Yudie, Zhao, Yuancong, Yang, Zhilu, Wang, Jin, Li, Xin

Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (CPU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.