Search Results

Now showing 1 - 2 of 2
  • Item
    783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power
    (Washington, DC : The Optical Society, 2021) Sumpf, Bernd; Theurer, Lara Sophie; Maiwald, Martin; Müller, André; Maaßdorf, André; Fricke, Jörg; Ressel, Peter; Tränkle, Günther
    Wavelength stabilized distributed Bragg reflector (DBR) tapered diode lasers at 783 nm will be presented. The devices are based on GaAsP single quantum wells embedded in a large optical cavity leading to a vertical far field angle of about 29◦ (full width at half maximum). The 3-inch (7.62 cm) wafers are grown using metalorganic vapor phase epitaxy. In a full wafer process, 4 mm long DBR tapered lasers are manufactured. The devices consist of a 500 µm long 10th order surface DBR grating that acts as rear side mirror. After that, a 1 mm long ridge waveguide section is realized for lateral confinement, which is connected to a 2.5 mm long flared section having a full taper angle of 6◦. At an injection current of 8 A, a maximum output power of about 7 W is measured. At output powers up to 6 W, the measured emission width limited by the resolution of the spectrometer is smaller than 19 pm. Measured at 1/e2 level at this output power, the lateral beam waist width is 11.5 µm, the lateral far field angle 12.5◦, and the lateral beam parameter M2 2.5. The respective parameters measured using the second moments are 31 µm, 15.2◦, and 8.3. 70% of the emitted power is originated from the central lobe. © 2021 Optical Society of America
  • Item
    60% Efficient Monolithically Wavelength-Stabilized 970-nm DBR Broad-Area Lasers
    (New York, NY : IEEE, 2022) Crump, Paul; Miah, M. Jarez; Wilkens, Martin; Fricke, Jorg; Wenzel, Hans; Knigge, Andrea
    Progress in epitaxial design is shown to enable increased optical output power P opt and power conversion efficiency η E and decreased lateral far-field divergence angle in GaAs-based distributed Bragg reflector (DBR) broad-area (BA) diode lasers. We show that the wavelength-locked power can be significantly increased (saturation at high bias current is mitigated) by migrating from an asymmetric large optical cavity (ASLOC) based laser structure to a highly asymmetric (extreme-triple-asymmetric (ETAS)) layer design. For wavelength-stabilization, 7 th order, monolithic DBRs are etched on the surface of fully grown epitaxial layer structures. The investigated ETAS reference Fabry-Pérot (FP) BA lasers without DBRs and with 200 µm stripe width and 4 mm cavity length provide P opt = 29 W (still increasing) at 30 A in continuous-wave mode at room temperature, in contrast to the maximum P opt = 24 W (limited by strong power saturation) of baseline ASLOC lasers. The reference ETAS FP lasers also deliver over 10% higher η E at P opt = 24 W. On the other hand, in comparison to the wavelength-stabilized ASLOC DBR lasers, ETAS DBR lasers show a peak power increment from 14 W to 22 W, and an efficiency increment from 46% to 60% at P opt = 14 W. A narrow spectral width (< 1 nm at 95% power content) is maintained across a very wide operating range. Consistent with earlier studies, a narrower far-field divergence angle and consequently an improved beam-parameter product is also observed, compared to the ASLOC-based lasers.