Search Results

Now showing 1 - 10 of 13
  • Item
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: Study of defect structures and superconductivity properties
    (College Park, MD : American Institute of Physics, 2019) Bateni, A.; Erdem, E.; Häßler, W.; Somer, M.
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature Tc was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Item
    Infrared emission bands and thermal effects for 440-nm-emitting GaN-based laser diodes
    (New York, NY : American Institute of Physics Inc., 2020) Mao F.; Hong J.; Wang H.; Chen Y.; Jing C.; Yang P.; Tomm J.W.; Chu J.; Yue F.
    Broad emission bands due to defects in (In,Ga,Al)N laser diodes operating at 440 nm are investigated using continuous-wave and pulsed currents. In addition to known yellow-green and short-wave infrared bands, defect emissions were observed even in the medium-wave infrared range. A separation from thermal radiation is possible. When using pulsed currents, a super-linearly increasing emission occurs at ∼1150 nm, which could be attributed to amplified spontaneous emission mainly due to the electroluminescence of deep defects in the optically active region. These results may be useful in interpreting the output power bottleneck of GaN-based lasers compared to mature GaAs-based lasers. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143802
  • Item
    Local chain deformation and overstrain in reinforced elastomers: An NMR study
    (Washington, DC : American Chemical Society, 2013) Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M.
    A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.
  • Item
    Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth
    (Amsterdam [u.a.] : Elsevier Science, 2019) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).
  • Item
    Erratum: Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging (Nanoscale (2021) DOI: 10.1039/D1NR01806J)
    (Cambridge : RSC Publ., 2021) Carnis, Jerome; Kirner, Felizitas; Lapkin, Dmitry; Sturm, Sebastian; Kim, Young Yong; Baburin, Igor A.; Khubbutdinov, Ruslan; Ignatenko, Alexandr; Iashina, Ekaterina; Mistonov, Alexander; Steegemans, Tristan; Wieck, Thomas; Gemming, Thomas; Lubk, Axel; Lazarev, Sergey; Sprung, Michael; Vartanyants, Ivan A.; Sturm, Elena V.
    Correction for ‘Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging’ by Jerome Carnis et al., Nanoscale, 2021, DOI: 10.1039/D1NR01806J.
  • Item
    Microstructural defects in hot deformed and as-transformed Ï„-MnAl-C
    (Lausanne : Elsevier, 2021) Zhao, P.; Feng, L.; Nielsch, K.; Woodcock, T.G.
    In this study, detailed microstructural characterisation has been conducted in both as-transformed and hot deformed samples of Ï„-MnAl-C using transmission electron microscopy. After hot deformation, true twins, dislocations, intrinsic stacking faults and precipitates of Mn3AlC are the main defects in the recrystallised grains. True twins and order twins were distinguished based on differences in their diffraction patterns. A significant fraction of non-recrystallised grains existed, which had microstructures based on combinations of high densities of true twins, dislocations, and deformation bands. The formation of the Mn3AlC precipitates was confirmed and related to the reduction of saturation magnetization and the increase in the Curie temperature of Ï„-MnAl-C after hot deformation. Antiphase boundaries, which are believed to act as nucleation sites for reverse domains, were not observed in the hot deformed sample.
  • Item
    Mechanical properties and twin boundary drag in Fe-Pd ferromagnetic shape memory foils-experiments and ab initio modeling
    (Bristol : IOP, 2011) Claussen, I.; Mayr, S.G.
    We report on vibrating reed measurements combined with density functional theory-based calculations to assess the elastic and damping properties of Fe-Pd ferromagnetic shape memory alloy splats. While the austenite-martensite phase transformation is generally accompanied by lattice softening, a severe modulus defect and elevated damping behavior are characteristic of the martensitic state. We interpret the latter in terms of twin boundary motion between pinning defects via partial 'twinning' dislocations. Energy dissipation is governed by twin boundary drag, primarily due to lattice imperfections, as concluded from the temperature dependence of damping and related activation enthalpies.
  • Item
    Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes
    (New York, NY [u.a.] : Springer, 2012) Rodriguez, R.D.; Sheremet, E.; Thurmer, D.J.; Lehmann, D.; Gordan, O.D.; Seidel, F.; Milekhin, A.; Schmidt, O.G.; Hietschold, M.; Zahn, D.R.T.
    Large arrays of multifunctional rolled-up semiconductors can be mass-produced with precisely controlled size and composition, making them of great technological interest for micro- and nano-scale device fabrication. The microtube behavior at different temperatures is a key factor towards further engineering their functionality, as well as for characterizing strain, defects, and temperature-dependent properties of the structures. For this purpose, we probe optical phonons of GaAs/InGaAs rolled-up microtubes using Raman spectroscopy on defect-rich (faulty) and defect-free microtubes. The microtubes are fabricated by selectively etching an AlAs sacrificial layer in order to release the strained InGaAs/GaAs bilayer, all grown by molecular beam epitaxy. Pristine microtubes show homogeneity of the GaAs and InGaAs peak positions and intensities along the tube, which indicates a defect-free rolling up process, while for a cone-like microtube, a downward shift of the GaAs LO phonon peak along the cone is observed. Formation of other type of defects, including partially unfolded microtubes, can also be related to a high Raman intensity of the TO phonon in GaAs. We argue that the appearance of the TO phonon mode is a consequence of further relaxation of the selection rules due to the defects on the tubes, which makes this phonon useful for failure detection/prediction in such rolled up systems. In order to systematically characterize the temperature stability of the rolled up microtubes, Raman spectra were acquired as a function of sample temperature up to 300°C. The reversibility of the changes in the Raman spectra of the tubes within this temperature range is demonstrated.
  • Item
    Spatially controlled epitaxial growth of 2D heterostructures via defect engineering using a focused He ion beam
    (London : Nature Publishing Group, 2021) Heilmann, Martin; Deinhart, Victor; Tahraoui, Abbes; Höflich, Katja; Lopes, J. Marcelo J.
    The combination of two-dimensional (2D) materials into heterostructures enables the formation of atomically thin devices with designed properties. To achieve a high-density, bottom-up integration, the growth of these 2D heterostructures via van der Waals epitaxy (vdWE) is an attractive alternative to the currently mostly employed mechanical transfer, which is problematic in terms of scaling and reproducibility. Controlling the location of the nuclei formation remains a key challenge in vdWE. Here, a focused He ion beam is used to deterministically place defects in graphene substrates, which serve as preferential nucleation sites for the growth of insulating, 2D hexagonal boron nitride (h-BN). Therewith a mask-free, selective-area vdWE (SAvdWE) is demonstrated, in which nucleation yield and crystal quality of h-BN are controlled by the ion beam parameters used for defect formation. Moreover, h-BN grown via SAvdWE is shown to exhibit electron tunneling characteristics comparable to those of mechanically transferred layers, thereby lying the foundation for a reliable, high-density array fabrication of 2D heterostructures for device integration via defect engineering in 2D substrates.
  • Item
    Giant persistent photoconductivity in monolayer MoS2 field-effect transistors
    (London : Nature Publishing Group, 2021) George, A.; Fistul, M.V.; Gruenewald, M.; Kaiser, D.; Lehnert, T.; Mupparapu, R.; Neumann, C.; Hübner, U.; Schaal, M.; Masurkar, N.; Arava, L.M.R.; Staude, I.; Kaiser, U.; Fritz, T.; Turchanin, A.
    Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD-based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (λ = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large number of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis for the defect-based engineering of the electronic and optical properties of TMDs for device applications.