Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Local chain deformation and overstrain in reinforced elastomers: An NMR study

2013, Pérez-Aparicio, R., Schiewek, M., Valentín, J.L., Schneider, H., Long, D.R., Saphiannikova, M., Sotta, P., Saalwächter, K., Ott, M.

A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.

Loading...
Thumbnail Image
Item

Investigation of changes in crystalline and amorphous structure during deformation of nano-reinforced semi-crystalline polymers by space-resolved synchrotron saxs and waxs

2009, Schneider, K., Schone, A., Jun, T.-S., Korsunsky, A.M.

Complex structural changes occur in semi-crystalline polymers during deformation. In (nano-)filled systems the situation becomes even more complicated, since not only phase changes may take place, but also local (interfacial) failure between phases may occur. To help identify specific processes taking place within these systems, simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) measurements were performed using synchrotron radiation during in situ deformation. Using a highly focused beam, spatially resolved local information can be extracted by scanning the beam across the deformed/damaged region within the sample. The characteristic changes in the different phases are presented and discussed. While the study of WAXS patterns gives insight into the orientation and dimensions of the crystallites, SAXS provides information about the mutual arrangement of phases and the interfacial failure phenomena. Based on the analysis of the results obtained in our experiments it will be shown that the first changes in the crystalline phase appear long before macroscopic yielding of the sample is reached, i.e. the onset of irreversible deformation takes place. In the post-yield regime radical changes are observed in both the long- and short-range structures. It is concluded that the presence of nano-fillers exerts a strong influence on the establishment of microcrystalline structure, and hence also on the deformation behaviour at the microscopic scale.

Loading...
Thumbnail Image
Item

A numerical study on deformation of Newtonian droplets through converging cylindrical dies

2013, Mostafaiyan, M., Saeb, M.R., Ahmadi, Z., Khonakdar, H.A., Wagenknecht, U., Heinrich, G.

In this work, the dynamic deformation of a viscose Newtonian droplet passing through cylindrical converging dies has been studied. The changes in the interfacial area between two immiscible Newtonian fluids have been considered as a variable representing the time-dependent deformation of a circular droplet along converging dies. To do so, a surface tracking method has been incorporated into a finite element code, developed by the authors, which quantifies the deformation of the droplet through the converging path, and where the surface area of the deformed drop has been consequently chosen as a criterion for a two-phase interface. In this study, it has been revealed that by changing both rheological and geometrical parameters it is possible to manage the value of interface area between two phases. Ultimately, a unique curve is developed for each droplet to primary phase viscosity ratio which can correlate drop deformation with geometrical parameters.

Loading...
Thumbnail Image
Item

Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

2015, Şopu, D., Stoica, M., Eckert, J.

Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials. The authors acknowledge the financial support of the European Research Council under the ERC Advanced Grant INTELHYB (Grant No. ERC-2013-ADG-340025) and the German Science Foundation (DFG) under the Leibniz Program (Grant No. EC 111/26-1). A DAAD-PPP travel grant is also acknowledged. Computing time was made available at ZIH TU Dresden and IFW Dresden as well as by CSC Julich. The authors acknowledge Dr. Simon Pauly and Sergio Scudino for fruitful discussions.