Search Results

Now showing 1 - 10 of 19
  • Item
    Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination
    (Cambridge : RSC, 2018) Kaiser, Selina K.; Lin, Ronghe; Mitchell, Sharon; Fako, Edvin; Krumeich, Frank; Hauert, Roland; Safonova, Olga V.; Kondratenko, Vita A.; Kondratenko, Evgenii V.; Collins, Sean M.; Midgley, Paul A.; López, Núria; Pérez-Ramírez, Javier
    Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts. © 2019 The Royal Society of Chemistry.
  • Item
    Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6
    (College Park, MD : American Physical Society, 2020) Rößler, S.; Jiao, L.; Seiro, S.; Rosa, P.F.S.; Fisk, Z.; Rößler, U.K.; Wirth, S.
    We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements.
  • Item
    A comprehensive analysis of the history of DFT based on the bibliometric method RPYS
    (London : BioMed Central, 2019) Haunschild, Robin; Barth, Andreas; French, Bernie
    This bibliometric study aims at providing a comprehensive analysis of the history of density functional theory (DFT) from a perspective of chemistry by using reference publication year spectroscopy (RPYS). 114,138 publications with their 4,412,152 non-distinct cited references are analyzed. The RPYS analysis revealed three different groups of seminal papers which researchers in DFT have drawn from: (i) some long-known experimental studies from the 19th century about physical and chemical phenomena were referenced rather frequently in contemporary DFT publications. (ii) Fundamental quantum-chemical papers from the time period 1900–1950 which predate DFT form another group of seminal papers. (iii) Finally, various very frequently employed DFT approximations, basis sets, and other techniques (e.g., implicit descriptions of solvents) constitute another group of seminal papers. The earliest cited reference we found was published in 1806. The references to papers published in the 19th century mainly served the purpose of referring to long-known physical and chemical phenomena which were used to test if DFT approximations deliver correct results (e.g., Van der Waals interactions). The foundational papers of DFT by Hohenberg and Kohn as well as Kohn and Sham do not seem to be affected by obliteration by incorporation as they appear as pronounced peaks in our RPYS analysis. Since the 1990s, only very few pronounced peaks occur as most years were referenced nearly equally often. Exceptions are 1993 and 1996 due to seminal papers by Axel Becke, John P. Perdew and co-workers, and Georg Kresse and co-workers.
  • Item
    Mechanical properties and twin boundary drag in Fe-Pd ferromagnetic shape memory foils-experiments and ab initio modeling
    (Bristol : IOP, 2011) Claussen, I.; Mayr, S.G.
    We report on vibrating reed measurements combined with density functional theory-based calculations to assess the elastic and damping properties of Fe-Pd ferromagnetic shape memory alloy splats. While the austenite-martensite phase transformation is generally accompanied by lattice softening, a severe modulus defect and elevated damping behavior are characteristic of the martensitic state. We interpret the latter in terms of twin boundary motion between pinning defects via partial 'twinning' dislocations. Energy dissipation is governed by twin boundary drag, primarily due to lattice imperfections, as concluded from the temperature dependence of damping and related activation enthalpies.
  • Item
    Experimental electronic structure of In2O3 and Ga2O3
    (Bristol : IOP, 2011) Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmscher, K.; Fornari, R.; Michling, M.; Schmeißer, D.; Weber, J.R.; Varley, J.B.; Van De Walle, C.G.
    Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.
  • Item
    Spatial resolution of tip-enhanced Raman spectroscopy – DFT assessment of the chemical effect
    (Cambridge : RSC Publ., 2016) Latorre, Federico; Kupfer, Stephan; Bocklitz, Thomas; Kinzel, Daniel; Trautmann, Steffen; Gräfe, Stefanie; Deckert, Volker
    Experimental evidence of extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been recently demonstrated. Here, we present a full quantum chemical description (at the density functional level of theory) of the non-resonant chemical effects on the Raman spectrum of an adenine molecule mapped by a tip, modeled as a single silver atom or a small silver cluster. We show pronounced changes in the Raman pattern and its intensities depending on the conformation of the nanoparticle–substrate system, concluding that the spatial resolution of the chemical contribution of TERS can be in the sub-nm range.
  • Item
    Ferroelectric switching in epitaxial GeTe films
    (New York : American Institute of Physics, 2014) Kolobov, A.V.; Kim, D.J.; Giussani, A.; Fons, P.; Tominaga, J.; Calarco, R.; Gruverman, A.
    In this paper, using a resonance-enhanced piezoresponse force microscopy approach supported by density functional theory computer simulations, we have demonstrated the ferroelectric switching in epitaxial GeTe films. It has been shown that in films with thickness on the order of several nanometers reversible reorientation of polarization occurs due to swapping of the shorter and longer Ge-Te bonds in the interior of the material. It is also hinted that for ultra thin films consisting of just several atomic layers weakly bonded to the substrate, ferroelectric switching may proceed through exchange of Ge and Te planes within individual GeTe layers.
  • Item
    Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory
    (Melville, NY : AIP Publ., 2022) Seyidov, Palvan; Varley, Joel B.; Galazka, Zbigniew; Chou, Ta-Shun; Popp, Andreas; Fiedler, Andreas; Irmscher, Klaus
    Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.
  • Item
    Step-flow growth in homoepitaxy of β-Ga2O3 (100)—The influence of the miscut direction and faceting
    (Melville, NY : AIP Publ., 2019) Schewski, R.; Lion, K.; Fiedler, A.; Wouters, C.; Popp, K.; Levchenko, S.V.; Schulz, T.; Schmidbauer, M.; Bin Anooz, S.; Grüneberg, R.; Galazka, Z.; Wagner, G.; Irmscher, K.; Scheffler, M.; Draxl, C.; Albrecht, M.
    We present a systematic study on the influence of the miscut orientation on structural and electronic properties in the homoepitaxial growth on off-oriented β-Ga2O3 (100) substrates by metalorganic chemical vapour phase epitaxy. Layers grown on (100) substrates with 6° miscut toward the [001⎯⎯] direction show high electron mobilities of about 90 cm2 V−1 s−1 at electron concentrations in the range of 1–2 × 1018 cm−3, while layers grown under identical conditions but with 6° miscut toward the [001] direction exhibit low electron mobilities of around 10 cm2 V−1 s−1. By using high-resolution scanning transmission electron microscopy and atomic force microscopy, we find significant differences in the surface morphologies of the substrates after annealing and of the layers in dependence on their miscut direction. While substrates with miscuts toward [001⎯⎯] exhibit monolayer steps terminated by (2⎯⎯01) facets, mainly bilayer steps are found for miscuts toward [001]. Epitaxial growth on both substrates occurs in step-flow mode. However, while layers on substrates with a miscut toward [001⎯⎯] are free of structural defects, those on substrates with a miscut toward [001] are completely twinned with respect to the substrate and show stacking mismatch boundaries. This twinning is promoted at step edges by transformation of the (001)-B facets into (2⎯⎯01) facets. Density functional theory calculations of stoichiometric low index surfaces show that the (2⎯⎯01) facet has the lowest surface energy following the (100) surface. We conclude that facet transformation at the step edges is driven by surface energy minimization for the two kinds of crystallographically inequivalent miscut orientations in the monoclinic lattice of β-Ga2O3.
  • Item
    Highly Planarized Naphthalene Diimide-Bifuran Copolymers with Unexpected Charge Transport Performance
    (Washington, DC : American Chemical Society, 2017) Matsidik, Rukiya; Luzio, Alessandro; Askin, Özge; Fazzi, Daniele; Sepe, Alessandro; Steiner, Ullrich; Komber, Hartmut; Caironi, Mario; Sommer, Michael
    The synthesis, characterization, and charge transport performance of novel copolymers PNDIFu2 made from alternating naphthalene diimide (NDI) and bifuran (Fu2) units are reported. Usage of potentially biomass-derived Fu2 as alternating repeat unit enables flattened polymer backbones due to reduced steric interactions between the imide oxygens and Fu2 units, as seen by density functional theory (DFT) calculations and UV-vis spectroscopy. Aggregation of PNDIFu2 in solution is enhanced if compared to the analogous NDI-bithiophene (T2) copolymers PNDIT2, occurring in all solvents and temperatures probed. PNDIFu2 features a smaller π-π stacking distance of 0.35 nm compared to 0.39 nm seen for PNDIT2. Alignment of aggregates in films is achieved by using off-center spin coating, whereby PNDIFu2 exhibits a stronger dichroic ratio and transport anisotropy in field-effect transistors (FET) compared to PNDIT2, with an overall good electron mobility of 0.21 cm2/(V s). Despite an enhanced backbone planarity, the smaller π-π stacking and the enhanced charge transport anisotropy, the electron mobility of PNDIFu2 is about three times lower compared to PNDIT2. Density functional theory calculations suggest that charge transport in PNDIFu2 is limited by enhanced polaron localization compared to PNDIT2.