Search Results

Now showing 1 - 4 of 4
  • Item
    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits
    (Singapore [u.a.] : World Scientific Publishing, 2014) Matthäus, C.; Cicchi, R.; Meyer, T.; Lattermann, A.; Schmitt, M.; Romeike, B.F.M.; Krafft, C.; Dietzek, B.; Brehm, B.R.; Pavone, F.S.; Popp, J.
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application.
  • Item
    Research Update: Van-der-Waals epitaxy of layered chalcogenide Sb2Te3 thin films grown by pulsed laser deposition
    (Melville, NY : AIP Publ., 2017) Hilmi, Isom; Lotnyk, Andriy; Gerlach, Jürgen W.; Schumacher, Philipp; Rauschenbach, Bernd
    An attempt to deposit a high quality epitaxial thin film of a two-dimensionally bonded (layered) chalcogenide material with van-der-Waals (vdW) epitaxy is of strong interest for non-volatile memory application. In this paper, the epitaxial growth of an exemplary layered chalcogenide material, i.e., stoichiometric Sb2Te3 thin films, is reported. The films were produced on unreconstructed highly lattice-mismatched Si(111) substrates by pulsed laser deposition (PLD). The films were grown by vdW epitaxy in a two-dimensional mode. X-ray diffraction measurements and transmission electron microscopy revealed that the films possess a trigonal Sb2Te3 structure. The single atomic Sb/Te termination layer on the Si surface was formed initializing the thin film growth. This work demonstrates a straightforward method to deposit vdW-epitaxial layered chalcogenides and, at the same time, opens up the feasibility to fabricate chalcogenide vdW heterostructures by PLD.
  • Item
    Impacts of a capillary barrier on infiltration and subsurface stormflow in layered slope deposits monitored with 3-D ERT and hydrometric measurements
    (Munich : EGU, 2017) Hübner, Rico; Günther, Thomas; Heller, Katja; Noell, Ursula; Kleber, Arno
    Identifying principles of water movement in the shallow subsurface is crucial for adequate process-based hydrological models. Hillslopes are the essential interface for water movement in catchments. The shallow subsurface on slopes typically consists of different layers with varying characteristics. The aim of this study was to draw conclusions about the infiltration behaviour, to identify water flow pathways and derive some general interpretations for the validity of the water movement on a hillslope with periglacial slope deposits (cover beds), where the layers differ in their sedimentological and hydrological properties. Especially the described varying influence of the basal layer (LB) as an impeding layer on the one hand and as a remarkable pathway for rapid subsurface stormflow on the other. We used a time lapse 3-D electrical resistivity tomography (ERT) approach combined with punctual hydrometric data to trace the spreading and the progression of an irrigation plume in layered slope deposits during two irrigation experiments. This multi-technical approach enables us to connect the high spatial resolution of the 3-D ERT with the high temporal resolution of the hydrometric devices. Infiltration through the uppermost layer was dominated by preferential flow, whereas the water flow in the deeper layers was mainly matrix flow. Subsurface stormflow due to impeding characteristic of the underlying layer occurs in form of "organic layer interflow" and at the interface to the first basal layer (LB1). However, the main driving factor for subsurface stormflow is the formation of a capillary barrier at the interface to the second basal layer (LB2). The capillary barrier prevents water from entering the deeper layer under unsaturated conditions and diverts the seepage water according to the slope inclination. With higher saturation, the capillary barrier breaks down and water reaches the highly conductive deeper layer. This highlights the importance of the capillary barrier effect for the prevention or activation of different flow pathways under variable hydrological conditions.
  • Item
    High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures – a case study in Bad Frankenhausen, Germany
    (Göttingen : Copernicus Publ., 2016) Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.
    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10–15 m.