Search Results

Now showing 1 - 3 of 3
  • Item
    Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo
    (Washington, DC : Optica, 2021-1-28) Schleusener, Johannes; Guo, Shuxia; Darvin, Maxim E.; Thiede, Gisela; Chernavskaia, Olga; Knorr, Florian; Lademann, Jürgen; Popp, Jürgen; Bocklitz, Thomas W.
    Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.
  • Item
    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits
    (Singapore [u.a.] : World Scientific Publishing, 2014) Matthäus, C.; Cicchi, R.; Meyer, T.; Lattermann, A.; Schmitt, M.; Romeike, B.F.M.; Krafft, C.; Dietzek, B.; Brehm, B.R.; Pavone, F.S.; Popp, J.
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application.
  • Item
    Graphene and silicene quantum dots for nanomedical diagnostics
    (Cambridge : RSC, 2019) Drissi, L. B.; Ouarrad, H.; Ramadan, F. Z.; Fritzsche, W.
    In the present work, the prominent effects of edge functionalization, size variation and base material on the structural, electronic and optical properties of diamond shaped graphene and silicene quantum dots are investigated. Three functional groups, namely (-CH3, -OH and -COOH) are investigated using the first principles calculations based on the density functional, time-dependent density functional and many-body perturbation theories. Both the HOMO-LUMO energy gap, the optical absorption and the photoluminescence are clearly modulated upon functionalization compared to the H-passivated counterparts. Besides the functional group, the geometric distortion induced in some QDs also influences their optical features ranging from near ultra-violet to near infra-red. All these results indicate that edge-functionalizations provide a favorable key factor for adjusting the optoelectronic properties of quantum dots for a wide variety of nanomedical applications, including in vitro and in vivo bioimaging in medical diagnostics and therapy. This journal is © The Royal Society of Chemistry.