Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Differential Cross Sections for the H + D2 → HD(v′ = 3, j′ = 4-10) + D Reaction above the Conical Intersection

2015, Gao, Hong, Sneha, Mahima, Bouakline, Foudhil, Althorpe, Stuart C., Zare, Richard N.

We report rovibrationally selected differential cross sections (DCSs) of the benchmark reaction H + D2 → HD(v′ = 3, j′ = 4–10) + D at a collision energy of 3.26 eV, which exceeds the conical intersection of the H3 potential energy surface at 2.74 eV. We use the PHOTOLOC technique in which a fluorine excimer laser at 157.64 nm photodissociates hydrogen bromide (HBr) molecules to generate fast H atoms and the HD product is detected in a state-specific manner by resonance-enhanced multiphoton ionization. Fully converged quantum wave packet calculations were performed for this reaction at this high collision energy without inclusion of the geometric phase (GP) effect, which takes into account coupling to the first excited state of the H3 potential energy surface. Multimodal structures can be observed in most of the DCSs up to j′ = 10, which is predicted by theory and also well-reproduced by experiment. The theoretically calculated DCSs are in good overall agreement with the experimental measurements, which indicates that the GP effect is not large enough that its existence can be verified experimentally at this collision energy.

Loading...
Thumbnail Image
Item

Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I

2016, Carrascosa, Eduardo, Michaelsen, Tim, Stei, Martin, Bastian, Björn, Meyer, Jennifer, Mikosch, Jochen, Wester, Roland

Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy.