Search Results

Now showing 1 - 4 of 4
  • Item
    Comparison of the molecular properties and morphology of polypropylenes irradiated under different atmospheres and after annealing
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2006) Krause, Beate; Häußler, Liane; Voigt, Dieter
    Electron-beam irradiation, a well-known way of generating long-chain branching, was used to modify polypropylene. Samples were investigated with differential scanning calorimetry, polarized light microscopy, and size exclusion chromatography. Independently of the atmosphere, postannealing led to the deactivation of residual radicals and to the reduction of the nucleus density. In comparison with the initial polypropylene, the crystallization temperatures increased for nonannealed samples but decreased for annealed samples. Stable products were obtained only by irradiation in nitrogen followed by annealing. A reaction including free radicals with oxygen in the ambient atmosphere led to increasing molar mass degradation and the formation of long-chain branching after Storage. © 2006 Wiley Periodicals, Inc.
  • Item
    Characterization of electron beam irradiated polypropylene: Influence of irradiation temperature on molecular and rheological properties
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2006) Krause, Beate; Voigt, Dieter; Häuβler, Liane; Auhl, Dietmar; Münstedt, Helmut
    The aim of the investigations was to analyze the influence of the temperature during the irradiation process of polypropylene on the molar mass, the formation of long chain branching and the final branching topology. A linear isotactic polypropylene homopolymer was modified by electron beam irradiation at different temperatures, with two irradiation doses to insert long chain branching. The Samples were analyzed by size exclusion chromatography coupled with a multiangle laser light scattering detector, by differential scanning calorimetry, and by shear and elongational rheology. The shear and elongational flow behavior isdiscussed in terms of the influence of molecular parameters and used to analyze the topology of the irradiated samples. With increasing temperature, a slight reduction of the molar mass, an increase of long chain branching and an increase of crystallization temperature were found. © 2006 Wiley Periodicals, Inc.
  • Item
    Long-chain branching of polypropylene by electron-beam irradiation in the molten state
    (Hoboken, NJ [u.a.] : Wiley InterScience, 2006) Krause, Beate; Stephan, M.; Volkland, S.; Voigt, D.; Häußler, L.; Dorschner, H.
    The electron-beam irradiation of polymers generates modification effects in the macromolecular structure and material properties. Therefore, irradiation processing is mostly realized in the polymer solid state. In this way, the modification of linear polypropylene may result in long-chain branching of polypropylene macromolecules. The objective of this article is to investigate the effect of a polymer in the molten state during electron-beam irradiation on the macromolecular structure and material properties of polypropylene. For this procedure, a special irradiation vessel (BG3) has been developed in which a rapid transfer of polymer films from the solid state to the molten state and a defined temperature during electron-beam irradiation are realizable. The irradiated samples have been analyzed by high-temperature size exclusion chromatography coupled with a multi-angle laser light scattering detector and differential scanning calorimetry (DSC) measurements. With an increasing irradiation dose, a high reduction of the molar mass and an increasing amount of long-chain branching are found. Compared with irradiation in the solid state, the modification in the molten state leads to a higher degree of branching. The Theological experiments in elongation flow clearly exhibit the existence of long-chain branching. Furthermore, DSC measurements show that the glass-transition temperature and peak temperatures of melting and crystallization decrease. © 2005 Wiley Periodicals, Inc.
  • Item
    Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures over a Wide Temperature Range
    (Basel : MDPI, 2018-8-30) Haas, Sebastian; Mosbacher, Mike; Senkov, Oleg N; Feuerbacher, Michael; Freudenberger, Jens; Gezgin, Senol; Völkl, Rainer; Glatzel, Uwe
    We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify the entropy. Using differential scanning calorimetry, cp-measurements are carried out from −170 °C to the materials’ solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. We applied the rule of mixture to predict molar heat capacities of the alloys at room temperature, which were in good agreement with the Dulong-Petit law. The molar heat capacity of the studied alloys was about three times the universal gas constant, hence the thermal entropy was the major contribution to total entropy. The configurational entropy, due to the chemical composition and number of components, contributes less on the absolute scale. Thermal entropy has approximately equal values for all alloys tested by DSC, while the crystal structure shows a small effect in their order. Finally, the contributions of entropy and enthalpy to the Gibbs free energy was calculated and examined and it was found that the stabilization of the solid solution phase in high entropy alloys was mostly caused by increased configurational entropy.