Search Results

Now showing 1 - 10 of 12
  • Item
    Effects of synthesis catalyst and temperature on broadband dielectric properties of nitrogen-doped carbon nanotube/polyvinylidene fluoride nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Ameli, A.; Arjmand, M.; Pötschke, Petra; Krause, Beate; Sundararaj, U.
    This study reports on nitrogen-doped carbon nanotube (N-CNT)/polymer nanocomposites exhibiting relatively high and frequency independent real permittivity (ϵ′) together with low dielectric loss (tan δ). N-CNTs were synthesized by chemical vapor deposition, and their nanocomposites were prepared by melt-mixing with polyvinylidene fluoride (PVDF). In the synthesis of N-CNTs, three catalysts of Co, Fe and Ni, and three temperatures of 650, 750 and 950 °C were employed. The morphology, aspect ratio, synthesis yield, remaining residue, nitrogen content, nitrogen bonding type, and powder conductivity of N-CNTs, and the morphology, polar crystalline phase, and broadband dielectric properties of N-CNT/PVDF nanocomposites were investigated. The results revealed that by proper selection of synthesis catalyst (Fe) and temperature (650 °C and 950 °C), nitrogen doping generated polarizable nanotubes via providing local polarization sites, and resulted in nanocomposites with favorable dielectric properties for charge storage applications at N-CNT loadings as low as 1.0 wt%. As a result, 3.5 wt% (N-CNT)Fe/950°C/PVDF nanocomposites exhibited an insulative behavior with ϵ' = 23.12 and tan δ = 0.05 at 1 kHz, a combination superior to that of PVDF, i.e., ϵ' = 8.4 and tan δ = 0.03 and to those of percolative nanocomposites, e.g., ϵ' = 71.20 and tan δ = 63.20 for 3.5 wt% (N-CNT)Fe/750°C/PVDF. Also, the relationships between the dielectric properties, N-CNT structure, and nanocomposite morphology were identified.
  • Item
    Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites
    (New York, NY [u.a.] : Pergamon Press, 2016) Arjmand, Mohammad; Chizari, Kambiz; Krause, Beate; Pötschke, Petra; Sundararaj, Uttandaraman
    Different catalysts including Co, Fe, and Ni were used to synthesize nitrogen-doped carbon nanotubes (N-CNTs) by chemical vapor deposition technique. Synthesized N-CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix using a small scale mixer at different concentrations ranging from 0.3 to 3.5 wt%, and then compression molded. The characterization techniques revealed significant differences in the synthesis yield and the morphological and electrical properties of both N-CNTs and nanocomposites depending on the catalyst type. Whereas Co and Fe resulted in yields comparable to industrial multiwalled CNTs, Ni was much less effective. The N-CNT aspect ratio was the highest for Co catalyst, followed by Ni and Fe, whereas nitrogen content was the highest for Ni. Raman spectroscopy revealed lowest defect number and highest N-CNT crystallinity for Fe catalyst. Characterization of N-CNT/PVDF nanocomposites showed better dispersion for N-CNTs based on Co and Fe as compared to Ni, and the following order of electrical conductivity and electromagnetic interference shielding (from high to low): Co > Fe > Ni. The superior electrical properties of (N-CNT)Co nanocomposites were ascribed to a combination of high synthesis yield, high aspect ratio, low nitrogen content and high crystallinity of N-CNTs combined with a good state of N-CNT dispersion.
  • Item
    Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination
    (Cambridge : RSC, 2018) Kaiser, Selina K.; Lin, Ronghe; Mitchell, Sharon; Fako, Edvin; Krumeich, Frank; Hauert, Roland; Safonova, Olga V.; Kondratenko, Vita A.; Kondratenko, Evgenii V.; Collins, Sean M.; Midgley, Paul A.; López, Núria; Pérez-Ramírez, Javier
    Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts. © 2019 The Royal Society of Chemistry.
  • Item
    A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones
    (Cambridge : RSC, 2018) Sahoo, Basudev; Kreyenschulte, Carsten; Agostini, Giovanni; Lund, Henrik; Bachmann, Stephan; Scalone, Michelangelo; Junge, Kathrin; Beller, Matthias
    By applying N-doped carbon modified iron-based catalysts, the controlled hydrogenation of N-heteroarenes, especially (iso)quinolones, is achieved. Crucial for activity is the catalyst preparation by pyrolysis of a carbon-impregnated composite, obtained from iron(ii) acetate and N-aryliminopyridines. As demonstrated by TEM, XRD, XPS and Raman spectroscopy, the synthesized material is composed of Fe(0), Fe3C and FeNx in a N-doped carbon matrix. The decent catalytic activity of this robust and easily recyclable Fe-material allowed for the selective hydrogenation of various (iso)quinoline derivatives, even in the presence of reducible functional groups, such as nitriles, halogens, esters and amides. For a proof-of-concept, this nanostructured catalyst was implemented in the multistep synthesis of natural products and pharmaceutical lead compounds as well as modification of photoluminescent materials. As such this methodology constitutes the first heterogeneous iron-catalyzed hydrogenation of substituted (iso)quinolones with synthetic importance.
  • Item
    Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory
    (Melville, NY : AIP Publ., 2022) Seyidov, Palvan; Varley, Joel B.; Galazka, Zbigniew; Chou, Ta-Shun; Popp, Andreas; Fiedler, Andreas; Irmscher, Klaus
    Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.
  • Item
    Diffusion and interface effects during preparation of all-solid microstructured fibers
    (Basel : MDPI AG, 2014) Kobelke, J.; Bierlich, J.; Wondraczek, K.; Aichele, C.; Pan, Z.; Unger, S.; Schuster, K.; Bartelt, H.
    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters(e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-μm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
  • Item
    Large-area wet-chemical deposition of nanoporous tungstic silica coatings
    (London [u.a.] : RSC, 2015) Nielsen, K.H.; Wondraczek, K.; Schubert, U.S.; Wondraczek, L.
    We report on a facile procedure for synthesis of nanoporous coatings of tungstic silica through wet-chemical deposition and post-treatment of tungsten-doped potassium silicate solutions. The process relies on an aqueous washing and ion exchange step where dispersed potassium salt deposits are removed from a 150 nm silicate gel layer. Through an adjustment of the pH value of the washing agent within the solubility regime of a tungstic salt precursor, the tungsten content of the remaining nanostructured coating can be controlled. We propose this route as a universal approach for the deposition of large-area coatings of nanoporous silica with the potential for incorporating a broad variety of other dopant species. As for the present case, we observe, on the one hand, antireflective properties which enable the reduction of reflection losses from float glass by up to 3.7 percent points. On the other hand, the incorporation of nanoscale tungstic precipitates provides a lever for tailoring the coating hydrophilicity and, eventually, also surface acidity. This may provide a future route for combining optical performance with anti-fouling functionality.
  • Item
    Pulsed laser deposition of thick BaHfO3-doped YBa 2Cu307-δ films on highly alloyed textured Ni-W tapes
    (Bristol : Institute of Physics Publishing, 2014) Sieger, M.; Hänisch, J.; Iida, K.; Gaitzsch, U.; Rodig, C.; Schultz, L.; Holzapfel, B.; Hühne, R.
    YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO 2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature T c of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level.
  • Item
    CW laser operation around 2-μm in (Tm,Yb):KLu(WO4) 2
    (Amsterdam : Elsevier, 2010) Segura, M.; Mateos, X.; Pujol, M.C.; Carvajal, J.J.; Petrov, V.; Aguiló, M.; Díaz, F.
    Laser generation in continuous wave (CW) regime at 1.94-μm from (Tm,Yb) codoped system has been investigated in two different hosts: KLu(WO 4)2 and KY(WO4)2. The high quality crystals were grown by the Top-Seeded Solution Growth Slow Cooling (TSSG-SC) method with doping levels of 2.5 at. %Tm and 5 at. %Yb. The active media were pumped with a diode laser at 980 nm. We demonstrated the superior performance of KLu(WO4)2 compared to that of KY(WO4) 2 and improved the results already obtained in the literature. The maximum laser output power reached was 157 mW for (Tm,Yb):KLu(WO 4)2 and 123 mW for (Tm,Yb):KY(WO4)2. © 2010 Published by Elsevier Ltd.
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.