Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Error estimates for nonlinear reaction-diffusion systems involving different diffusion length scales

2016, Reichelt, Sina

We derive quantitative error estimates for coupled reaction-diffusion systems, whose coefficient functions are quasi-periodically oscillating modeling the microstructure of the underlying macroscopic domain. The coupling arises via nonlinear reaction terms and we allow for different diffusion length scales, i.e. whereas some species have characteristic diffusion length of order 1 other species may diffuse with the order of the characteristic microstructure-length scale. We consider an effective system, which is rigorously obtained via two-scale convergence, and we derive quantitative error estimates.

Loading...
Thumbnail Image
Item

Control of transversal instabilities in reaction-diffusion systems

2018, Totz, S., Löber, J., Totz, J.F., Engel, H.

In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh-Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.