Search Results

Now showing 1 - 5 of 5
  • Item
    Relationship between temperature and apparent shape of pristine ice crystals derived from polarimetric cloud radar observations during the ACCEPT campaign
    (München : European Geopyhsical Union, 2016) Myagkov, Alexander; Seifert, Patric; Wandinger, Ulla; Bühl, Johannes; Engelmann, Ronny
    This paper presents first quantitative estimations of apparent ice particle shape at the top of liquid-topped clouds. Analyzed ice particles were formed under mixed-phase conditions in the presence of supercooled water and in the temperature range from −20 to −3 °C. The estimation is based on polarizability ratios of ice particles measured by a Ka-band cloud radar MIRA-35 with hybrid polarimetric configuration. Polarizability ratio is a function of the geometrical axis ratio and the dielectric properties of the observed hydrometeors. For this study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with the cloud-top temperatures of  ∼ −5,  ∼ −8,  ∼ −15, and  ∼ −20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected apparent shapes with well-known shape–temperature dependencies observed in laboratories was found. Polarizability ratios used for the analysis were estimated for areas located close to the cloud top, where aggregation and riming processes do not strongly affect ice particles. We concluded that, in microwave scattering models, ice particles detected in these areas can be assumed to have pristine shapes. It was also found that even slight variations of ambient conditions at the cloud top with temperatures warmer than  ∼ −5 °C can lead to rapid changes of ice crystal shape.
  • Item
    Earth system data cubes unravel global multivariate dynamics
    (Göttingen : Copernicus Publ., 2020) Mahecha, Miguel D.; Gans, Fabian; Brandt, Gunnar; Christiansen, Rune; Cornell, Sarah E.; Fomferra, Normann; Kraemer, Guido; Peters, Jonas; Bodesheim, Paul; Camps-Valls, Gustau; Donges, Jonathan F.; Dorigo, Wouter; Estupinan-Suarez, Lina M.; Gutierrez-Velez, Victor H.; Gutwin, Martin; Jung, Martin; Londoño, Maria C.; Miralles, Diego G.; Papastefanou, Phillip; Reichstein, Markus
    Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model-data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and (3) model-data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model-data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
  • Item
    Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art
    (München : European Geopyhsical Union, 2013) Foley, A.M.; Dalmonech, D.; Friend, A.D.; Aires, F.; Archibald, A.T.; Bartlein, P.; Bopp, L.; Chappellaz, J.; Cox, P.; Edwards, N.R.; Feulner, G.; Friedlingstein, P.; Harrison, S.P.; Hopcroft, P.O.; Jones, C.D.; Kolassa, J.; Levine, J.G.; Prentice, I.C.; Pyle, J.; Vázquez Riveiros, N.; Wolff, E.W.; Zaehle, S.
    Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.
  • Item
    Inferring causation from time series in Earth system sciences
    ([London] : Nature Publishing Group UK, 2019) Runge, Jakob; Bathiany, Sebastian; Bollt, Erik; Camps-Valls, Gustau; Coumou, Dim; Deyle, Ethan; Glymour, Clark; Kretschmer, Marlene; Mahecha, Miguel D.; Muñoz-Marí, Jordi; van Nes, Egbert H.; Peters, Jonas; Quax, Rick; Reichstein, Markus; Scheffer, Marten; Schölkopf, Bernhard; Spirtes, Peter; Sugihara, George; Sun, Jie; Zhang, Kun; Zscheischler, Jakob
    The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. © 2019, The Author(s).
  • Item
    Pore-scale tomography and imaging: applications, techniques and recommended practice
    (Göttingen : Copernicus Publ., 2016) Halisch, Matthias; Steeb, Holger; Henkel, Steven; Krawczyk, Charlotte M.
    [No abstract available]