Search Results

Now showing 1 - 3 of 3
  • Item
    Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
    (Munich : EGU, 2021) Stenzel, Fabian; Gerten, Dieter; Hanasaki, Naota
    Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.
  • Item
    Water savings potentials of irrigation systems: Global simulation of processes and linkages
    (Göttingen : Copernicus GmbH, 2015) Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.
  • Item
    Scaling Laws of Collective Ride-Sharing Dynamics
    (College Park, Md. : APS, 2020) Molkenthin, Nora; Schröder, Malte; Timme, Marc
    Ride-sharing services may substantially contribute to future sustainable mobility. Their collective dynamics intricately depend on the topology of the underlying street network, the spatiotemporal demand distribution, and the dispatching algorithm. The efficiency of ride-sharing fleets is thus hard to quantify and compare in a unified way. Here, we derive an efficiency observable from the collective nonlinear dynamics and show that it exhibits a universal scaling law. For any given dispatcher, we find a common scaling that yields data collapse across qualitatively different topologies of model networks and empirical street networks from cities, islands, and rural areas. A mean-field analysis confirms this view and reveals a single scaling parameter that jointly captures the influence of network topology and demand distribution. These results further our conceptual understanding of the collective dynamics of ride-sharing fleets and support the evaluation of ride-sharing services and their transfer to previously unserviced regions or unprecedented demand patterns.