Search Results

Now showing 1 - 4 of 4
  • Item
    Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions
    (Cambridge : RSC Publ., 2021) Malerz, Sebastian; Trinter, Florian; Hergenhahn, Uwe; Ghrist, Aaron; Ali, Hebatallah; Nicolas, Christophe; Saak, Clara-Magdalena; Richter, Clemens; Hartweg, Sebastian; Nahon, Laurent; Lee, Chin; Goy, Claudia; Neumark, Daniel M; Meijer, Gerard; Wilkinson, Iain; Winter, Bernd; Thürmer, Stephan
    We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10–14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.
  • Item
    Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6
    (College Park, MD : American Physical Society, 2020) Rößler, S.; Jiao, L.; Seiro, S.; Rosa, P.F.S.; Fisk, Z.; Rößler, U.K.; Wirth, S.
    We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements.
  • Item
    Resonant inelastic x-ray incarnation of Young’s double-slit experiment
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Revelli, A.; Moretti, Sala, M.; Monaco, G.; Becker, P.; Bohatý, L.; Hermanns, M.; Koethe, T.C.; Fröhlich, T.; Warzanowski, P.; Lorenz, T.; Streltsov, S.V.; van Loosdrecht, P.H.M.; Khomskii, D.I.; van den Brink, J.; Grüninger, M.
    Young’s archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young’s experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba 3 CeIr 2 O 9 with structural Ir dimers and strong spin-orbit coupling. The double “slits” in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.
  • Item
    Elastic scattering coefficients and enhancement of nearly elastic cloaking
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Abbas, Tasawar; Ammari, Habib; Hu, Guanghui; Wahab, Abdul; Ye, Jong Chul
    The concept of scattering coefficients has played a pivotal role in a broad range of inverse scattering and imaging problems in acoustic and electromagnetic media. In view of their promising applications, we introduce the notion of scattering coefficients of an elastic inclusion in this article. First, we define elastic scattering coefficients and substantiate that they naturally appear in the expansions of elastic scattered field and far field scattering amplitudes corresponding to a plane wave incidence. Then an algorithm is developed and analyzed for extracting the elastic scattering coefficients from multi-static response measurements of the scattered field. Moreover, the estimate of the maximal resolving order is provided in terms of the signal-to-noise ratio. The decay rate and symmetry of the elastic scattering coefficients are also discussed. Finally, we design scattering-coefficients-vanishing structures and elucidate their utility for enhancement of nearly elastic cloaking.