Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Origin of Terahertz Soft-Mode Nonlinearities in Ferroelectric Perovskites

2021, Pal, Shovon, Strkalj, Nives, Yang, Chia-Jung, Weber, Mads C., Trassin, Morgan, Woerner, Michael, Fiebig, Manfred

Soft modes are intimately linked to structural instabilities and are key for the understanding of phase transitions. The soft modes in ferroelectrics, for example, map directly the polar order parameter of a crystal lattice. Driving these modes into the nonlinear, frequency-changing regime with intense terahertz (THz) light fields is an efficient way to alter the lattice and, with it, the physical properties. However, recent studies show that the THz electric-field amplitudes triggering a nonlinear soft-mode response are surprisingly low, which raises the question on the microscopic picture behind the origin of this nonlinear response. Here, we use linear and two-dimensional terahertz (2D THz) spectroscopy to unravel the origin of the soft-mode nonlinearities in a strain-engineered epitaxial ferroelectric SrTiO3 thin film. We find that the linear dielectric function of this mode is quantitatively incompatible with pure ionic or pure electronic motions. Instead, 2D THz spectroscopy reveals a pronounced coupling of electronic and ionic-displacement dipoles. Hence, the soft mode is a hybrid mode of lattice (ionic) motions and electronic interband transitions. We confirm this conclusion with model calculations based on a simplified pseudopotential concept of the electronic band structure. It reveals that the entire THz nonlinearity is caused by the off-resonant nonlinear response of the electronic interband transitions of the lattice-electronic hybrid mode. With this work, we provide fundamental insights into the microscopic processes that govern the softness that any material assumes near a ferroic phase transition. This knowledge will allow us to gain an efficient all-optical control over the associated large nonlinear effects.

Loading...
Thumbnail Image
Item

Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions

2021, Elsaesser, Thomas, Schauss, Jakob, Kundu, Achintya, Fingerhut, Benjamin P.

Electric interactions have a strong impact on the structure and dynamics of biomolecules in their native water environment. Given the variety of water arrangements in hydration shells and the femto- to subnanosecond time range of structural fluctuations, there is a strong quest for sensitive noninvasive probes of local electric fields. The stretching vibrations of phosphate groups, in particular the asymmetric (PO2)− stretching vibration νAS(PO2)−, allow for a quantitative mapping of dynamic electric fields in aqueous environments via a field-induced redshift of their transition frequencies and concomitant changes of vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular systems of increasing complexity, including dimethyl phosphate (DMP), short DNA and RNA duplex structures, and transfer RNA (tRNA) in water. A combination of linear infrared absorption, two-dimensional infrared (2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives quantitative insight in electric-field tuning rates of vibrational frequencies, electric field and fluctuation amplitudes, and molecular interaction geometries. Beyond neat water environments, the formation of contact ion pairs of phosphate groups with Mg2+ ions is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct vibrational band. The frequency positions of contact geometries are determined by an interplay of attractive electric and repulsive exchange interactions.