Search Results

Now showing 1 - 9 of 9
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.
  • Item
    Emerging, hydrogen-driven electrochemical water purification
    (Amsterdam [u.a.] : Elsevier Science, 2022) Suss, M.E.; Zhang, Y.; Atlas, I.; Gendel, Y.; Ruck, E.B.; Presser, V.
    Energy-efficient technologies for the remediation of water and generation of drinking water is a key towards sustainable technologies. Electrochemical desalination technologies are promising alternatives towards established methods, such as reverse osmosis or nanofiltration. In the last few years, hydrogen-driven electrochemical water purification has emerged. This review article explores the concept of desalination fuel cells and capacitive-Faradaic fuel cells for ion separation.
  • Item
    Protective role of sphingomyelin in eye lens cell membrane model against oxidative stress
    (Basel : MDPI, 2021) Ravandeh, Mehdi; Coliva, Giulia; Kahlert, Heike; Azinfar, Amir; Helm, Christiane A.; Fedorova, Maria; Wende, Kristian
    In the eye lens cell membrane, the lipid composition changes during the aging process: the proportion of sphingomyelins (SM) increases, that of phosphatidylcholines decreases. To investigate the protective role of the SMs in the lens cell membrane against oxidative damage, analytical techniques such as electrochemistry, high-resolution mass spectrometry (HR-MS), and atomic force microscopy (AFM) were applied. Supported lipid bilayers (SLB) were prepared to mimic the lens cell membrane with different fractions of PLPC/SM (PLPC: 1-palmitoyl-2-linoleoylsn-glycero-3-phosphocholine). The SLBs were treated with cold physical plasma. A protective effect of 30% and 44% in the presence of 25%, and 75% SM in the bilayer was observed, respectively. PLPC and SM oxidation products were determined via HR-MS for SLBs after plasma treatment. The yield of fragments gradually decreased as the SM ratio increased. Topographic images obtained by AFM of PLPC-bilayers showed SLB degradation and pore formation after plasma treatment, no degradation was observed in PLPC/SM bilayers. The results of all techniques confirm the protective role of SM in the membrane against oxidative damage and support the idea that the SM content in lens cell membrane is increased during aging in the absence of effective antioxidant systems to protect the eye from oxidative damage and to prolong lens transparency.
  • Item
    Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2018) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    We propose a modeling framework for magnetizable, polarizable, elastic, viscous, heat conducting, reactive mixtures in contact with interfaces. To this end, we first introduce bulk and surface balance equations that contain several constitutive quantities. For further modeling of the constitutive quantities, we formulate constitutive principles. They are based on an axiomatic introduction of the entropy principle and the postulation of Galilean symmetry. We apply the proposed formalism to derive constitutive relations in a rather abstract setting. For illustration of the developed procedure, we state an explicit isothermal material model for liquid electrolyte|metal electrode interfaces in terms of free energy densities in the bulk and on the surface. Finally, we give a survey of recent advancements in the understanding of electrochemical interfaces that were based on this model.
  • Item
    New insights on the interfacial tension of electrochemical interfaces and the Lippmann equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dreyer, Wolfgang; Guhlke, Clemens; Landstorfer, Manuel; Neumann, Johannes; Müller, Rüdiger
    The Lippmann equation is considered as universal relationship between interfacial tension, double layer charge, and cell potential. Based on the framework of continuum thermo-electrodynamics we provide some crucial new insights to this relation. In a previous work we have derived a general thermodynamic consistent model for electrochemical interfaces, which showed a remarkable agreement to single crystal experimental data. Here we apply the model to a curved liquid metal electrode. If the electrode radius is large compared to the Debye length, we apply asymptotic analysis methods and obtain the Lippmann equation. We give precise definitions of the involved quantities and show that the interfacial tension of the Lippmann equation is composed of the surface tension of our general model, and contributions arising from the adjacent space charge layers. This finding is confirmed by a comparison of our model to experimental data of several mercury-electrolyte interfaces. We obtain qualitative and quantitative agreement in the 2V potential range for various salt concentrations. We also discuss the validity of our asymptotic model when the electrode radius is comparable to the Debye length.
  • Item
    Optical assets of in situ electro-assembled platinum black nanolayers
    (London : Nature Publishing Group, 2017) Stanca, S.E.; Hänschke, F.; Zieger, G.; Dellith, J.; Ihring, A.; Undisz, A.; Meyer, H.-G.
    Optoelectronic technology has been increasingly driven towards miniaturization. In this regard, maintaining the optical properties of the bulk materials while reducing their size is a critical need. How thin must the film be to preserve the bulk material´s optical absorbance and reflectance characteristics? This is the central question for our study of the in situ electro-assembly broad band optical absorber films of platinum in non-aqueous solution of PtCl4. By reducing the in situ constructed film to sub-visible-wavelength thicknesses, the measured reflectance in the region from the ultraviolet to the infrared remained close to that exhibited by the micrometre-width films. These platinum black films broadly absorb electromagnetic waves at a sub-incident-wavelength thickness owing to their plasmonically increased absorbance cross-section. Simulation of various incident energy electron trajectories gives insights into the electron depth through the porous platinum black of ρ = 1.6 g/cm3 and previews the optical behaviour close to the atomic thickness.
  • Item
    Chemical and electrochemical synthesis of platinum black
    (London : Nature Publishing Group, 2017) Stanca, S.E.; Hänschke, F.; Ihring, A.; Zieger, G.; Dellith, J.; Kessler, E.; Meyer, H.-G.
    We present electrochemical and chemical synthesis of platinum black at room temperature in aqueous and non-aqueous media. X-ray analysis established the purity and crystalline nature. The electron micrographs indicate that the nanostructures consist of platinum crystals that interconnect to form porous assemblies. Additionally, the electron micrographs of the platinum black thin layer, which was electrochemically deposited on different metallic and semiconductive substrates (aluminium, platinum, silver, gold, tin-cooper alloy, indium-tin-oxide, stainless steel, and copper), indicate that the substrate influences its porous features but not its absorbance characteristics. The platinum black exhibited a broad absorbance and low reflectance in the ultraviolet, visible, and infrared regions. These characteristics make this material suitable for use as a high-temperature resistant absorber layer for the fabrication of microelectronics.
  • Item
    Thermodynamic models for a concentration and electric field dependent susceptibility in liquid electrolytes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Landstorfer, Manuel; Müller, Rüdiger
    The dielectric susceptibility $chi$ is an elementary quantity of the electrochemical double layer and the associated Poisson equation. While most often $chi$ is treated as a material constant, its dependency on the salt concentration in liquid electrolytes is demonstrated by various bulk electrolyte experiments. This is usually referred to as dielectric decrement. Further, it is theoretically well accepted that the susceptibility declines for large electric fields. This effect is frequently termed dielectric saturation. We analyze the impact of a variable susceptibility in terms of species concentrations and electric fields based on non-equilibrium thermodynamics. This reveals some non-obvious generalizations compared to the case of a constant susceptibility. In particular the consistent coupling of the Poisson equation, the momentum balance and the chemical potentials functions are of ultimate importance. In a numerical study, we systematically analyze the effects of a concentration and field dependent susceptibility on the double layer of a planar electrode electrolyte interface. We compute the differential capacitance and the spatial structure of the electric potential, solvent concentration and ionic distribution for various non-constant models of $chi$.
  • Item
    Modeling polycrystalline electrode-electrolyte interfaces: The differential capacitance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Fuhrmann, Jürgen; Landstorfer, Manuel; Müller, Rüdiger
    We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter $d^facet to 0$ we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit $L^Debye << d^facet$ , an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces.