Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Multiscale thermodynamics of charged mixtures

2021, Vágner, Petr, Pavelka, Michal, Esen, Oğul

A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization, and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Absence of induced magnetic monopoles in Maxwellian magnetoelectrics

2022, Nogueira, Flavio S., van den Brink, Jeroen

The electromagnetic response of topological insulators is governed by axion electrodynamics, which features a topological magnetoelectric term in the Maxwell equations. As a consequence magnetic fields become the source of electric fields and vice versa, a phenomenon that is general for any material exhibiting a linear magnetoelectric effect. Axion electrodynamics has been associated with the possibility to create magnetic monopoles, in particular, by an electrical charge that is screened above the surface of a magnetoelectric material. Here we explicitly solve for the electromagnetic fields in this geometry and show that while vortexlike magnetic screening fields are generated by the electrical charge their divergence is identically zero at every point in space, which implies an absence of induced magnetic monopoles. Nevertheless magnetic image charges can be made explicit in the problem, and even if no bound state with electric charges yielding a dyon arises, a dyonlike angular momentum follows from our analysis. Because of its dependence on the dielectric constant this angular momentum is not quantized, which is consistent with a general argument that precludes magnetic monopoles to be generated in Maxwell magnetoelectrics. We also solve for topologically protected zero modes in the Dirac equation induced by the point charge. Since the induced topological defect on the topological insulator's surface carries an electric charge as a result of the axion term, these zero modes are not self-conjugated.

Loading...
Thumbnail Image
Item

A photonic platform for donor spin qubits in silicon

2017, Morse, Kevin J., Abraham, Rohan J. S., DeAbreu, Adam, Bowness, Camille, Richards, Timothy S., Riemann, Helge, Abrosimov, Nikolay V., Becker, Peter, Pohl, Hans-Joachim, Thewalt, Michael L. W., Simmons, Stephanie

Donor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence (T2) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method of reliably coupling spatially separated donor qubits has yet to be identified. We present a scalable silicon-based platform using the unique optical properties of “deep” chalcogen donors. For the prototypical 77Se+ donor, we measure lower bounds on the transition dipole moment and excited-state lifetime, enabling access to the strong coupling limit of cavity quantum electrodynamics using known silicon photonic resonator technology and integrated silicon photonics. We also report relatively strong photon emission from this same transition. These results unlock clear pathways for silicon-based quantum computing, spin-to-photon conversion, photonic memories, integrated single-photon sources, and all-optical switches.