Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes

2015, You, Tiangui, Ou, Xin, Niu, Gang, Bärwolf, Florian, Li, Guodong, Du, Nan, Bürger, Danilo, Skorupa, Ilona, Jia, Qi, Yu, Wenjie, Wang, Xi, Schmidt, Oliver G., Schmidt, Heidemarie

BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode.

Loading...
Thumbnail Image
Item

Detection of small bunches of ions using image charges

2018, Räcke, Paul, Spemann, Daniel, Gerlach, Jürgen W., Rauschenbach, Bernd, Meijer, Jan

A concept for detection of charged particles in a single fly-by, e.g. within an ion optical system for deterministic implantation, is presented. It is based on recording the image charge signal of ions moving through a detector, comprising a set of cylindrical electrodes. This work describes theoretical and practical aspects of image charge detection (ICD) and detector design and its application in the context of real time ion detection. It is shown how false positive detections are excluded reliably, although the signal-to-noise ratio is far too low for time-domain analysis. This is achieved by applying a signal threshold detection scheme in the frequency domain, which - complemented by the development of specialised low-noise preamplifier electronics - will be the key to developing single ion image charge detection for deterministic implantation.