Search Results

Now showing 1 - 4 of 4
  • Item
    Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces
    (London : Nature Publishing Group, 2015) Oliveira, Myriano H., Jr.; Lopes, Joao Marcelo J.; Schumann, Timo; Galves, Lauren A.; Ramsteiner, Manfred; Berlin, Katja; Trampert, Achim; Riechert, Henning
    Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science. Here we show a method, which includes a straightforward air annealing, for the preparation of quasi-free-standing AB-bilayer nanoribbons with different widths on SiC(0001). Furthermore, the experiments reveal that the degree of disorder at the edges increases with the width, indicating that the narrower nanoribbons are more ordered in their edge termination. In general, the reported approach is a viable route towards the large-scale fabrication of bilayer graphene nanostructures with tailored dimensions and properties for specific applications.
  • Item
    Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
    (London : Nature Publishing Group, 2016) Ly, Thuc Hue; Perello, David J.; Zhao, Jiong; Deng, Qingming; Kim, Hyun; Han, Gang Hee; Chae, Sang Hoon; Jeong, Hye Yun; Lee, Young Hee
    Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron microscopy and first-principles calculations. Transmission electron microscopy indicates that grain boundaries are primarily composed of 5–7 dislocation cores with periodicity and additional complex defects formed at high angles, obeying the classical low-angle theory for angles <22°. The inter-domain mobility is minimized for angles <9° and increases nonlinearly by two orders of magnitude before saturating at ∼16 cm2 V−1 s−1 around misorientation angle≈20°. This trend is explained via grain-boundary electrostatic barriers estimated from density functional calculations and experimental tunnelling barrier heights, which are ≈0.5 eV at low angles and ≈0.15 eV at high angles (≥20°).
  • Item
    Controlled assembly of graphene-capped nickel, cobalt and iron silicides
    (London : Nature Publishing Group, 2013) Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L.V.; Generalov, A.V.; Borygina, K.; Verbitskiy, N.I.; Grüneis, A.; Vyalikh, D.V.
    In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti46Zr20V12Cu5Be17 exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify the work-hardening behavior of dendrites and softening of the amorphous matrix. Furthermore, the model can be employed to simulate the tensile behavior of in-situ dendrite/MGMCs.
  • Item
    Topological signatures in the electronic structure of graphene spirals
    (London : Nature Publishing Group, 2013) Avdoshenko, Stas M.; Koskinen, Pekka; Sevinçli, Haldun; Popov, Alexey A.; Rocha, Claudia G.
    Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work.