Search Results

Now showing 1 - 2 of 2
  • Item
    Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile
    (Oxford [u.a.] : Blackwell, 2021) Frentrup, Martinique; Thiel, Nadine; Junker, Vera; Behrens, Wiebke; Münch, Steffen; Siller, Paul; Kabelitz, Tina; Faust, Matthias; Indra, Alexander; Baumgartner, Stefanie; Schepanski, Kerstin; Amon, Thomas; Roesler, Uwe; Funk, Roger; Nübel, Ulrich
    During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.
  • Item
    Land-use futures in the shared socio-economic pathways
    (Amsterdam [u.a.] : Elsevier, 2017) Popp, Alexander; Calvin, Katherine; Fujimori, Shinichiro; Havlik, Petr; Humpenöder, Florian; Stehfest, Elke; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Doelmann, Jonathan C.; Gusti, Mykola; Hasegawa, Tomoko; Kyle, Page; Obersteiner, Michael; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Waldhoff, Stephanie; Weindl, Isabelle; Wise, Marshall; Kriegler, Elmar; Lotze-Campen, Hermann; Fricko, Oliver; Riahi, Keywan; Vuuren, Detlef P. van
    In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors