Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Large deviations of specific empirical fluxes of independent Markov chains, with implications for Macroscopic Fluctuation Theory

2017, Renger, D.R. Michiel

We consider a system of independent particles on a finite state space, and prove a dynamic large-deviation principle for the empirical measure-empirical flux pair, taking the specific fluxes rather than net fluxes into account. We prove the large deviations under deterministic initial conditions, and under random initial conditions satisfying a large-deviation principle. We then show how to use this result to generalise a number of principles from Macroscopic Fluctuation Theory to the finite-space setting.

Loading...
Thumbnail Image
Item

The enhanced Sanov theorem and propagation of chaos

2017, Deuschel, Jean-Dominique, Friz, Peter K., Maurelli, Mario, Slowik, Martin

We establish a Sanov type large deviation principle for an ensemble of interacting Brownian rough paths. As application a large deviations for the (-layer, enhanced) empirical measure of weakly interacting diffusions is obtained. This in turn implies a propagation of chaos result in a space of rough paths and allows for a robust analysis of the particle system and its McKean–Vlasov type limit, as shown in two corollaries.