Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Optimization of quantum trajectories driven by strong-field waveforms

2014, Haessler, S., Balciunas, T., Fan, G., Andriukaitis, G., Pugžlys, A., Baltuška, A., Witting, T., Squibb, R., Zaïr, A., Tisch, J.W.G., Marangos, Chipperfield, L.E.

Quasifree field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecondduration extreme ultaviolet emission in the process of high-harmonic generation. The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer and the efficient return of the launched electron trajectories. It has been predicted that these limits can be significantly exceeded by an appropriately ramped-up cycle shape [L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)]. Here, we present an experimental realization of similar cycle-shaped waveforms and demonstrate control of the high-harmonic generation process on the single-atom quantum level via attosecond steering of the electron trajectories.With our improved optical cycles, we boost the field ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, 2 orders of magnitude enhancement of the generated extreme ultraviolet flux together with an increased spectral extension. This application, which is only one example of what can be achieved with cycle-shaped high-field light waves, has significant implications for attosecond spectroscopy and molecular self-probing.

Loading...
Thumbnail Image
Item

Possible experimental realization of a basic Z 2 topological semimetal in GaGeTe

2019, Haubold, E., Fedorov, A., Pielnhofer, F., Rusinov, I.P., Menshchikova, T.V., Duppel, V., Friedrich, D., Weihrich, R., Pfitzner, A., Zeugner, A., Isaeva, A., Thirupathaiah, S., Kushnirenko, Y., Rienks, E., Kim, T., Chulkov, E.V., Büchner, B., Borisenko, S.

We report experimental and theoretical evidence that GaGeTe is a basic Z2 topological semimetal with three types of charge carriers: bulk-originated electrons and holes as well as surface state electrons. This electronic situation is qualitatively similar to the classic 3D topological insulator Bi2Se3, but important differences account for an unprecedented transport scenario in GaGeTe. High-resolution angle-resolved photoemission spectroscopy combined with advanced band structure calculations show a small indirect energy gap caused by a peculiar band inversion at the T-point of the Brillouin zone in GaGeTe. An energy overlap of the valence and conduction bands brings both electron and holelike carriers to the Fermi level, while the momentum gap between the corresponding dispersions remains finite. We argue that peculiarities of the electronic spectrum of GaGeTe have a fundamental importance for the physics of topological matter and may boost the material's application potential.

Loading...
Thumbnail Image
Item

Experimental realization of a 12,000-finesse laser cavity based on a low-noise microstructured mirror

2023, Dickmann, Johannes, Sauer, Steffen, Meyer, Jan, Gaedtke, Mika, Siefke, Thomas, Brückner, Uwe, Plentz, Jonathan, Kroker, Stefanie

The most precise measurement tools of humankind are equipped with ultra-stable lasers. State-of-the-art laser stabilization techniques are based on external cavities, that are limited by noise originated in the coatings of the cavity mirrors. Microstructured mirror coatings (so-called meta-mirrors) are a promising technology to overcome the limitations of coating noise and therewith pave the way towards next-generation ultra-stable lasers. We present experimental realization of a 12,000-finesse optical cavity based on one low-noise meta-mirror. The use of the mirrors studied here in cryogenic silicon cavities represents an order of magnitude reduction in the current limiting mirror noise, such that the stability limit due to fundamental noise can be reduced to 5 × 10−18.