Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nanofluid: Simulation and experimental study

2019, Arkian, Amir Hossein, Najafi, Gholamhassan, Gorjian, Shiva, Loni, Reyhaneh, Bellos, Evangelos, Yusaf, Talal

In this study, a small dish concentrator with a cylindrical cavity receiver was experimentally investigated as the heat source of a dryer. The system was examined for operation with pure thermal oil and Al2O3/oil nanofluid as the working fluids in the solar system. Moreover, the design, the development, and the evaluation of the dried mint plant are presented in this work. Also, the solar dryer system was simulated by the SolidWorks and ANSYS CFX software. On the other side, the color histogram of the wet and dried mint samples based on the RGB method was considered. The results revealed that the different temperatures of the solar working fluids at the inlet and outlet of the cavity receiver showed similar trend data compared to the variation of the solar radiation during the experimental test. Moreover, it is found that the cavity heat gain and thermal efficiency of the solar system was improved by using the nanofluid as the solar working fluid. Furthermore, the required time for mint drying had decreased by increasing the drying temperature and increasing air speed. The highest drying time was measured equal to 320 min for the condition of the air speed equal to 0.5 m/s and the drying temperature of 30 ◦C. A good agreement was observed between the calculated numerical results and measured experimental data. Finally, based on the color histogram of the wet and dried mint samples, it was concluded that intensity amount of the red color of the mint increased with the drying process compared to intensity amount of the red color of the wet mint sample. © 2019 by the authors.

Loading...
Thumbnail Image
Item

Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy

2022, Kunnas, Peter, Moradi, Mohammad-Amin, Sommerdijk, Nico, de Jonge, Niels

Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.