Search Results

Now showing 1 - 4 of 4
  • Item
    Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback
    (Bristol : IOP, 2012) Otto, C.; Lüdge, K.; Vladimirov, A.G.; Wolfrum, M.; Schöll, E.
    We study a passively mode-locked semiconductor ring laser subject to optical feedback from an external mirror. Using a delay differential equation model for the mode-locked laser, we are able to systematically investigate the resonance effects of the inter-spike interval time of the laser and the roundtrip time of the light in the external cavity (delay time) for intermediate and long delay times. We observe synchronization plateaus following the ordering of the well-known Farey sequence. Our results show that in agreement with the experimental results a reduction of the timing jitter is possible if the delay time is chosen close to an integer multiple of the inter-spike interval time of the laser without external feedback. Outside the main resonant regimes the timing jitter is drastically increased by the feedback.
  • Item
    Experimental realization of a 12,000-finesse laser cavity based on a low-noise microstructured mirror
    (London : Springer Nature, 2023) Dickmann, Johannes; Sauer, Steffen; Meyer, Jan; Gaedtke, Mika; Siefke, Thomas; Brückner, Uwe; Plentz, Jonathan; Kroker, Stefanie
    The most precise measurement tools of humankind are equipped with ultra-stable lasers. State-of-the-art laser stabilization techniques are based on external cavities, that are limited by noise originated in the coatings of the cavity mirrors. Microstructured mirror coatings (so-called meta-mirrors) are a promising technology to overcome the limitations of coating noise and therewith pave the way towards next-generation ultra-stable lasers. We present experimental realization of a 12,000-finesse optical cavity based on one low-noise meta-mirror. The use of the mirrors studied here in cryogenic silicon cavities represents an order of magnitude reduction in the current limiting mirror noise, such that the stability limit due to fundamental noise can be reduced to 5 × 10−18.
  • Item
    Hybrid integrated mode-locked laser using a GaAs-based 1064 nm gain chip and a SiN external cavity
    (Washington, DC : Soc., 2022) Vissers, Ewoud; Poelman, Stijn; Wenzel, Hans; Christopher, Heike; Van Gasse, Kasper; Knigge, Andrea; Kuyken, Bart
    External cavity mode-locked lasers could be used as comb sources for high volume application such as LIDAR and dual comb spectroscopy. Currently demonstrated chip scale integrated mode-locked lasers all operate in the C-band. In this paper, a hybrid-integrated external cavity mode-locked laser working at 1064 nm is demonstrated, a wavelength beneficial for optical coherence tomography or Raman spectroscopy applications. Additionally, optical injection locking is demonstrated, showing an improvement in the optical linewidth, and an increased stability of the comb spectrum.
  • Item
    Dynamics of micro-integrated external-cavity diode lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Radziunas, Mindaugas; Tronciu, Vasile Z.; Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Wicht, Andreas; Wenzel, Hans
    This paper reports the results of numerical and experimental investigations of the dynamics of an external cavity diode laser device composed of a semiconductor laser and a distant Bragg grating, which provides an optical feedback. Due to the influence of the feedback, this system can operate at different dynamic regimes. The traveling wave model is used for simulations and analysis of the nonlinear dynamics in the considered laser device. Based on this model, a detailed analysis of the optical modes is performed, and the stability of the stationary states is discussed. It is shown, that the results obtained from the simulation and analysis of the device are in good agreement with experimental findings.