Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Optimization of quantum trajectories driven by strong-field waveforms

2014, Haessler, S., Balciunas, T., Fan, G., Andriukaitis, G., Pugžlys, A., Baltuška, A., Witting, T., Squibb, R., Zaïr, A., Tisch, J.W.G., Marangos, Chipperfield, L.E.

Quasifree field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecondduration extreme ultaviolet emission in the process of high-harmonic generation. The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer and the efficient return of the launched electron trajectories. It has been predicted that these limits can be significantly exceeded by an appropriately ramped-up cycle shape [L. E. Chipperfield et al., Phys. Rev. Lett. 102, 063003 (2009)]. Here, we present an experimental realization of similar cycle-shaped waveforms and demonstrate control of the high-harmonic generation process on the single-atom quantum level via attosecond steering of the electron trajectories.With our improved optical cycles, we boost the field ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, 2 orders of magnitude enhancement of the generated extreme ultraviolet flux together with an increased spectral extension. This application, which is only one example of what can be achieved with cycle-shaped high-field light waves, has significant implications for attosecond spectroscopy and molecular self-probing.

Loading...
Thumbnail Image
Item

Laboratory setup for extreme ultraviolet coherence tomography driven by a high-harmonic source

2019, Nathanael, Jan, Wünsche, Martin, Fuchs, Silvio, Weber, Thomas, Abel, Johann J., Reinhard, Julius, Wiesner, Felix, Hübner, Uwe, Skruszewicz, Slawomir J., Paulus, Gerhard G., Rödel, Christian

We present a laboratory beamline dedicated to nanoscale subsurface imaging using extreme ultraviolet coherence tomography (XCT). In this setup, broad-bandwidth extreme ultraviolet (XUV) radiation is generated by a laser-driven high-harmonic source. The beamline is able to handle a spectral range of 30-130 eV and a beam divergence of 10 mrad (full width at half maximum). The XUV radiation is focused on the sample under investigation, and the broadband reflectivity is measured using an XUV spectrometer. For the given spectral window, the XCT beamline is particularly suited to investigate silicon-based nanostructured samples. Cross-sectional imaging of layered nanometer-scale samples can be routinely performed using the laboratory-scale XCT beamline. A depth resolution of 16 nm has been achieved using the spectral range of 36-98 eV which represents a 33% increase in resolution due to the broader spectral range compared to previous work. © 2019 Author(s).

Loading...
Thumbnail Image
Item

Polycapillary-boosted instrument performance in the extreme ultraviolet regime for inverse photoemission spectroscopy

2017, Braig, Christoph, Sokolov, Andrey, Wilks, Regan G., Kozina, Xeniya, Kunze, Thomas, Bjeoumikhova, Sempfira, Thiel, Markus, Erko, Alexei, Bär, Marcus

A collimating polycapillary half lens, traditionally used in the medium and hard X-ray band, is operated at a photon energy of 36 eV for the first time. While the transmission still exceeds 50%, the measured and simulated spatial resolution and angular divergence approach 0.4 mm or less and at most 20 mrad, respectively. This unexpected, superior performance of the polycapillary optic in the extreme Ultraviolet could enable the design of an e cient, versatile and compact spectrometer for inverse photoemission spectroscopy (IPES): Its wavelength-dispersive component, a customized reflection zone plate, can maintain an energy resolution of 0.3 eV, whereas the sensitivity may be enhanced by more than one order of magnitude, compared to conventional spectrometers. Furthermore, the overall length of 0.9 m would allow for an eased alignment and evacuation. We see a significant potential for numerous polycapillary-based XUV / soft X-ray instruments in the future, in particular after further optimization for this long wavelength regime.

Loading...
Thumbnail Image
Item

Characterization of encapsulated graphene layers using extreme ultraviolet coherence tomography

2022, Wiesner, Felix, Skruszewicz, Slawomir, Rödel, Christian, Abel, Johann Jakob, Reinhard, Julius, Wünsche, Martin, Nathanael, Jan, Grünewald, Marco, Hübner, Uwe, Paulus, Gerhard G., Fuchs, Silvio

Many applications of two-dimensional materials such as graphene require the encapsulation in bulk material. While a variety of methods exist for the structural and functional characterization of uncovered 2D materials, there is a need for methods that image encapsulated 2D materials as well as the surrounding matter. In this work, we use extreme ultraviolet coherence tomography to image graphene flakes buried beneath 200 nm of silicon. We show that we can identify mono-, bi-, and trilayers of graphene and quantify the thickness of the silicon bulk on top by measuring the depth-resolved reflectivity. Furthermore, we estimate the quality of the graphene interface by incorporating a model that includes the interface roughness. These results are verified by atomic force microscopy and prove that extreme ultraviolet coherence tomography is a suitable tool for imaging 2D materials embedded in bulk materials.