Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Compact intense extreme-ultraviolet source

2021, Major, Balázs, Ghafur, Omair, Kovács, Katalin, Varjú, Katalin, Tosa, Valer, Vrakking, Marc J. J., Schütte, B.

High-intensity laser pulses covering the ultraviolet to terahertz spectral regions are nowadays routinely generated in a large number of laboratories. In contrast, intense extreme-ultraviolet (XUV) pulses have only been demonstrated using a small number of sources including free-electron laser facilities [1-3] and long high-harmonic generation (HHG) beamlines [4-9]. Here we demonstrate a concept for a compact intense XUV source based on HHG that is focused to an intensity of $2 \times 10^{14}$ W/cm$^2$, with a potential increase up to $10^{17}$ W/cm$^2$ in the future. Our approach uses tight focusing of the near-infrared (NIR) driving laser and minimizes the XUV virtual source size by generating harmonics several Rayleigh lengths away from the NIR focus. Accordingly, the XUV pulses can be refocused to a small beam waist radius of 600 nm, enabling the absorption of up to four XUV photons by a single Ar atom in a setup that fits on a modest (2 m) laser table. Our concept represents a straightforward approach for the generation of intense XUV pulses in many laboratories, providing novel opportunities for XUV strong-field and nonlinear optics experiments, for XUV-pump XUV-probe spectroscopy and for the coherent diffractive imaging of nanoscale structures.

Loading...
Thumbnail Image
Item

Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering

2020, Rupp, Daniela, Flückiger, Leonie, Adolph, Marcus, Colombo, Alessandro, Gorkhover, Tais, Harmand, Marion, Krikunova, Maria, Müller, Jan Philippe, Oelze, Tim, Ovcharenko, Yevheniy, Richter, Maria, Sauppe, Mario, Schorb, Sebastian, Treusch, Rolf, Wolter, David, Bostedt, Christoph, Möller, Thomas

We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.