Search Results

Now showing 1 - 2 of 2
  • Item
    Anatomy and the type concept in biology show that ontologies must be adapted to the diagnostic needs of research
    (London : BioMed Central, 2022) Vogt, Lars; Mikó, István; Bartolomaeus, Thomas
    Background: In times of exponential data growth in the life sciences, machine-supported approaches are becoming increasingly important and with them the need for FAIR (Findable, Accessible, Interoperable, Reusable) and eScience-compliant data and metadata standards. Ontologies, with their queryable knowledge resources, play an essential role in providing these standards. Unfortunately, biomedical ontologies only provide ontological definitions that answer What is it? questions, but no method-dependent empirical recognition criteria that answer How does it look? questions. Consequently, biomedical ontologies contain knowledge of the underlying ontological nature of structural kinds, but often lack sufficient diagnostic knowledge to unambiguously determine the reference of a term. Results: We argue that this is because ontology terms are usually textually defined and conceived as essentialistic classes, while recognition criteria often require perception-based definitions because perception-based contents more efficiently document and communicate spatial and temporal information—a picture is worth a thousand words. Therefore, diagnostic knowledge often must be conceived as cluster classes or fuzzy sets. Using several examples from anatomy, we point out the importance of diagnostic knowledge in anatomical research and discuss the role of cluster classes and fuzzy sets as concepts of grouping needed in anatomy ontologies in addition to essentialistic classes. In this context, we evaluate the role of the biological type concept and discuss its function as a general container concept for groupings not covered by the essentialistic class concept. Conclusions: We conclude that many recognition criteria can be conceptualized as text-based cluster classes that use terms that are in turn based on perception-based fuzzy set concepts. Finally, we point out that only if biomedical ontologies model also relevant diagnostic knowledge in addition to ontological knowledge, they will fully realize their potential and contribute even more substantially to the establishment of FAIR and eScience-compliant data and metadata standards in the life sciences.
  • Item
    Ontologies4Chem: The landscape of ontologies in chemistry
    (Berlin : de Gruyter, 2022) Strömert, Philip; Hunold, Johannes; Castro, André; Neumann, Steffen; Koepler, Oliver
    For a long time, databases such as CAS, Reaxys, PubChem or ChemSpider mostly rely on unique numerical identifiers or chemical structure identifiers like InChI, SMILES or others to link data across heterogeneous data sources. The retrospective processing of information and fragmented data from text publications to maintain these databases is a cumbersome process. Ontologies are a holistic approach to semantically describe data, information and knowledge of a domain. They provide terms, relations and logic to semantically annotate and link data building knowledge graphs. The application of standard taxonomies and vocabularies from the very beginning of data generation and along research workflows in electronic lab notebooks (ELNs), software tools, and their final publication in data repositories create FAIR data straightforwardly. Thus a proper semantic description of an investigation and the why, how, where, when, and by whom data was produced in conjunction with the description and representation of research data is a natural outcome in contrast to the retrospective processing of research publications as we know it. In this work we provide an overview of ontologies in chemistry suitable to represent concepts of research and research data. These ontologies are evaluated against several criteria derived from the FAIR data principles and their possible application in the digitisation of research data management workflows.