Search Results

Now showing 1 - 7 of 7
  • Item
    On the Differential Capacitance and Potential of Zero Charge of Au(111) in Some Aprotic Solvents
    (Weinheim : Wiley-VCH, 2021) Shatla, Ahmed S.; Landstorfer, Manuel; Baltruschat, Helmut
    Voltammetric and Gouy-Chapman capacitance minimum measurements were conducted on Au(111) and roughened Au(111) electrodes in aprotic electrolytes in the absence and presence of specifically adsorbed ions for concentrations ranging from 0.001 to 0.5 M. Negative of the point of zero charge (pzc), the capacitance maximum increases in the order Ca2+
  • Item
    Effects of methyl terminal and carbon bridging groups ratio on critical properties of porous organosilicate-glass films
    (Basel : MDPI, 2020) Vishnevskiy, Alexey S.; Naumov, Sergej; Seregin, Dmitry S.; Wu, Yu-Hsuan; Chuang, Wei-Tsung; Rasadujjaman, Md.; Zhang, Jing; Leu, Jihperng; Vorotilov, Konstantin A.; Baklanov, Mikhail R.
    Organosilicate glass-based porous low dielectic constant films with different ratios of terminal methyl to bridging organic (methylene, ethylene and 1,4-phenylene) groups are spin-on deposited by using a mixture of alkylenesiloxane with organic bridges and methyltrimethoxysilane, followed by soft baking at 120–200◦ C and curing at 430◦ C. The films’ porosity was controlled by using sacrificial template Brij® L4. Changes of the films’ refractive indices, mechanical properties, k-values, porosity and pore structure versus chemical composition of the film’s matrix are evaluated and compared with methyl-terminated low-k materials. The chemical resistance of the films to annealing in oxygen-containing atmosphere is evaluated by using density functional theory (DFT). It is found that the introduction of bridging groups changes their porosity and pore structure, increases Young’s modulus, but the improvement of mechanical properties happens simultaneously with the increase in the refractive index and k-value. The 1,4-phenylene bridging groups have the strongest impact on the films’ properties. Mechanisms of oxidative degradation of carbon bridges are studied and it is shown that 1,4-phenylene-bridged films have the highest stability. Methylene-and ethylene-bridged films are less stable but methylene-bridged films show slightly higher stability than ethylene-bridged films. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets
    (Bristol : IOP Publ., 2015) Reuter, Stephan; Sousa, Joao Santos; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre
    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method's simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a 'best practice' guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.
  • Item
    Calculation of ventilation rates and ammonia emissions : Comparison of sampling strategies for a naturally ventilated dairy barn
    (San Diego, Calif. : Academ. Press, 2020) Janke, David; Willink, Dylia; Ammon, Christian; Hempel, Sabrina; Schrade, Sabine; Demeyer, Peter; Hartung, Eberhard; Amon, Barbara; Ogink, Nico; Amon, Thomas
    Emissions and ventilation rates (VRs) in naturally ventilated dairy barns (NVDBs) are usually measured using indirect methods, where the choice of inside and outside sampling locations (i.e. sampling strategy) is crucial. The goal of this study was to quantify the influence of the sampling strategy on the estimation of emissions and VRs. We equipped a NVDB in northern Germany with an extensive measuring setup capable of measuring emissions under all wind conditions. Ammonia (NH3) and carbon dioxide (CO2) concentrations were measured with two Fourier-transform infrared spectrometers. Hourly values for ventilation rates and emissions for ammonia over a period of nearly a year were derived using the CO2 balance method and five different sampling strategies for the acquisition of indoor and outdoor concentrations were applied. When comparing the strategy estimating the highest emission level to the strategy estimating the lowest, the differences in NH3 emissions in winter, transition, and summer season were +26%, +19% and +11%, respectively. For the ventilation rates, the differences were +80%, +94%, and 63% for the winter, transition and summer season, respectively. By accommodating inside/outside concentration measurements around the entire perimeter of the barn instead of a reduced part of the perimeter (aligned to a presumed main wind direction), the amount of available data substantially increased for around 210% for the same monitoring period.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Chemical and Structural Comparison of Different Commercial Food Supplements for Silicon Uptake
    (Basel : MDPI, 2023) Curto, Yannic; Koch, Marcus; Kickelbick, Guido
    Various food supplements for silicon uptake were compared in terms of their structures and chemical compositions. In particular, we analyzed the silanol group content, which can be an indicator of the uptake of the siliceous species in the human body. We analyzed the commercial products Original Silicea Balsam®, Flügge Siliceous Earth Powder, Pure Colloidal Silicon, and BioSil® by applying various methods such as FTIR, 29Si NMR, and TGA. The Si-OH group content of the samples containing pure silica was the highest for the Original Silicea Balsam followed by the Pure Colloidal Silicon. The siliceous earth powder revealed the lowest content of such groups and the densest structure. BioSil® contained a considerable concentration of organic molecules that stabilized orthosilicic acid. The study may help to understand the silicon uptake behavior of different food supplements depending on their chemical structure.