Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses

2013, Rosenfeld, A., Höhm, S., Bonse, J., Krüger, J.

The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.

Loading...
Thumbnail Image
Item

Towards time resolved core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers

2008, Pietzsch, A., Föhlisch, A., Beye, M., Deppe, M., Hennies, F., Nagasono, M., Suljotil, E., Wurth, W., Gahl, C., Dörich, K., Melnikov, A.

We have performed core level photoelectron spectroscopy on a W(110) single crystal with femtosecond XUV pulses from the free-electron laser at Hamburg (FLASH). We demonstrate experimentally and through theoretical modelling that for a suitable range of photon fluences per pulse, time-resolved photoemission experiments on solid surfaces are possible. Using FLASH pulses in combination with a synchronized optical laser, we have performed femtosecond time-resolved core-level photoelectron spectroscopy and observed sideband formation on the W 4f lines indicating a cross correlation between femtosecond optical and XUV pulses. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Electron–phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission

2013, Rettig, L., Cortés, R., Jeevan, H.S., Gegenwart, P., Wolf, T., Fink, J., Bovensiepen, U.

Based on the results from femtosecond time-resolved photoemission, we compare three different methods for the determination of the electron–phonon coupling constant λ in Eu- and Ba-based 122 FeAs compounds. We find good agreement between all three methods, which reveal a small λ < 0.2. This makes simple electron–phonon-mediated superconductivity unlikely in these compounds.