Search Results

Now showing 1 - 5 of 5
  • Item
    Carboxylated nitrile butadiene rubber/hybrid filler composites
    (São Carlos : Universidade Federal de São Carlos, 2012) Mousa, A.; Heinrich, G.; Simon, F.; Wagenknecht, U.; Stöckelhuber, K.-W.; Dweiri, R.
    The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS) of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH). Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR) to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR) of the composites. The degree of curing ΔM (maximum torque-minimum torque) as a function of hybrid filler as derived from moving die rheometer (MDR) is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA) is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM).
  • Item
    Local chain deformation and overstrain in reinforced elastomers: An NMR study
    (Washington, DC : American Chemical Society, 2013) Pérez-Aparicio, R.; Schiewek, M.; Valentín, J.L.; Schneider, H.; Long, D.R.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M.
    A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.
  • Item
    Establishment, morphology and properties of carbon nanotube networks in polymer melts
    (Amsterdam [u.a.] : Elsevier, 2012) Alig, I.; Pötschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T.
    As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented.
  • Item
    Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications
    (Manchester, NH : Wiley, 2019) Naji, Ahmed; Krause, Beate; Pötschke, Petra; Ameli, Amir
    Conductive polymer composites (CPCs) with high electrical and thermal conductivities are demanded for bipolar plates of fuel cells. In this work, CPCs of polycarbonate (PC) filled with carbon nanotube (CNT), carbon fiber (CF), graphite (G), and their double and triple hybrids were prepared using solution casting method followed by compression molding. The results showed that the electrical percolation thresholds for the PC-CNT and PC-CF were ~1 wt% and ~10 wt%, respectively, while no clear threshold was found for PC-G composites. Addition of 3–5 wt% CNT improved the electrical conductivity of PC-CF and PC-G systems up to 6 orders of magnitude and enhanced the thermal conductivity as much as 65%. The results of triple hybrid CPCs (with constant loading of 63 wt%) indicated that the combination of highest electrical and thermal conductivities is achieved when the CF and CNT loadings were near their percolation thresholds. Therefore, a triple filler system of 3 wt% CNT, 10 wt% CF, and 50 wt% G resulted in a composite with the through-plane and in-plane electrical conductivity, and thermal conductivity values of 12.8 S/cm, 8.3 S/cm, and 1.7 W/m•K, respectively. The results offer a combination of properties surpassing the existing values and suitable for high-conductivity applications such as bipolar plates. POLYM. COMPOS., 40:3189–3198, 2019. © 2018 Society of Plastics Engineers.
  • Item
    Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels
    (London : RSC Publishing, 2017) Saeb, Mohammad Reza; Ghaffari, Mehdi; Rastin, Hadi; Khonakdar, Hossein Ali; Simon, Frank; Najafi, Farhood; Goodarzi, Vahabodin; Vijayan P., Poornima; Puglia, Debora; Asl, Farzaneh Hassanpour; Formela, Krzysztof
    Biowaste chicken eggshell (ES) powder was applied as a potential cure modifier in epoxy/anhydride systems. Cure behaviour and kinetics of composites filled with very low content (0.1 wt% based on epoxy resin) of ES, calcium carbonate (CaCO3), and terpolymer-modified fillers, mES and mCaCO3, were discussed comparatively. Surface analysis was performed by X-ray photoelectron spectroscopy. Cure kinetics was investigated by differential (Friedman) and integral (Ozawa and Kissinger-Akahira-Sunose) isoconversional methods using dynamic differential scanning calorimetry (DSC) data. Overall, protein precursors naturally existing in the structure of pristine ES facilitated crosslinking of epoxy and hardener of anhydride with functional groups resulting from terpolymer attachment to CaCO3 particles. Accelerated/hindered cure was observed depending on the filler type and surface characteristics, as investigated via the autocatalytic/non-catalytic nature of reactions and comparison of activation energy values of four types of composites. An enhanced cure was identified for composites containing untreated ES, which could be inferred on account of the lower competitive cure of carboxyl groups in the terpolymer backbone with epoxy compared to peptide groups existing in microporous pristine ES. On the other hand, mCaCO3 revealed low values of activation energy compared to pristine CaCO3, but still of the same order as ground biowaste ES.