Search Results

Now showing 1 - 2 of 2
  • Item
    Drift–diffusion simulation of S-shaped current–voltage relations for organic semiconductor devices
    (Dordrecht : Springer Science + Business Media B.V., 2020) Doan, Duy Hai; Fischer, Axel; Fuhrmann, Jürgen; Glitzky, Annegret; Liero, Matthias
    We present an electrothermal drift–diffusion model for organic semiconductor devices with Gauss–Fermi statistics and positive temperature feedback for the charge carrier mobilities. We apply temperature-dependent Ohmic contact boundary conditions for the electrostatic potential and discretize the system by a finite volume based generalized Scharfetter–Gummel scheme. Using path-following techniques, we demonstrate that the model exhibits S-shaped current–voltage curves with regions of negative differential resistance, which were only recently observed experimentally. © 2020, The Author(s).
  • Item
    On convergences of the squareroot approximation scheme to the Fokker-Planck operator
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Heida, Martin
    We study the qualitative convergence properties of a finite volume scheme that recently was proposed by Lie, Fackeldey and Weber [SIAM Journal on Matrix Analysis and Applications 2013 (34/2)] in the context of conformation dynamics. The scheme was derived from physical principles and is called the squareroot approximation (SQRA) scheme. We show that solutions to the SQRA equation converge to solutions of the Fokker-Planck equation using a discrete notion of G-convergence. Hence the squareroot approximation turns out to be a usefull approximation scheme to the Fokker-Planck equation in high dimensional spaces. As an example, in the special case of stationary Voronoi tessellations we use stochastic two-scale convergence to prove that this setting satisfies the G-convergence property. In particular, the class of tessellations for which the G-convergence result holds is not trivial.