Search Results

Now showing 1 - 2 of 2
  • Item
    Statistical characteristics of surrogate data based on geophysical measurements
    (Göttingen : Copernicus, 2006) Venema, V.; Bachner, S.; Rust, H.W.; Simmer, C.
    In this study, the statistical properties of a range of measurements are compared with those of their surrogate time series. Seven different records are studied, amongst others, historical time series of mean daily temperature, daily rain sums and runoff from two rivers, and cloud measurements. Seven different algorithms are used to generate the surrogate time series. The best-known method is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm, which is able to reproduce the measured distribution as well as the power spectrum. Using this setup, the measurements and their surrogates are compared with respect to their power spectrum, increment distribution, structure functions, annual percentiles and return values. It is found that the surrogates that reproduce the power spectrum and the distribution of the measurements are able to closely match the increment distributions and the structure functions of the measurements, but this often does not hold for surrogates that only mimic the power spectrum of the measurement. However, even the best performing surrogates do not have asymmetric increment distributions, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found deviations of the structure functions on small scales.
  • Item
    Comparison of correlation analysis techniques for irregularly sampled time series
    (Göttingen : Copernicus GmbH, 2011) Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
    Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques. All methods have comparable root mean square errors (RMSEs) for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF) for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF) the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods. We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory) is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.