Search Results

Now showing 1 - 2 of 2
  • Item
    Wave-shaped polycyclic hydrocarbons with controlled aromaticity
    (Cambridge : RSC, 2019) Ma, Ji; Zhang, Ke; Schellhammer, Karl Sebastian; Fu, Yubin; Komber, Hartmut; Xu, Chi; Popov, Alexey A.; Hennersdorf, Felix; Weigand, Jan J.; Zhou, Shengqiang; Pisula, Wojciech; Ortmann, Frank; Berger, Reinhard; Liu, Junzhi; Feng, Xinliang
    Controlling the aromaticity and electronic properties of curved π-conjugated systems has been increasingly attractive for the development of novel functional materials for organic electronics. Herein, we demonstrate an efficient synthesis of two novel wave-shaped polycyclic hydrocarbons (PHs) 1 and 2 with 64 π-electrons. Among them, the wave-shaped π-conjugated carbon skeleton of 2 is unambiguously revealed by single-crystal X-ray crystallography analysis. The wave-shaped geometry is induced by steric congestion in the cove and fjord regions. Remarkably, the aromaticity of these two structural isomers can be tailored by the annulated direction of cyclopenta[b]fluorene units. Isomer 1 (Eoptg = 1.13 eV) behaves as a closed-shell compound with weakly antiaromatic feature, whereas its structural isomer 2 displays a highly stable tetraradical character (y0 = 0.23; y1 = 0.22; t1/2 = 91 days) with a narrow optical energy gap of 0.96 eV. Moreover, the curved PH 2 exhibits remarkable ambipolar charge transport in solution-processed organic thin-film transistors. Our research provides a new insight into the design and synthesis of stable functional curved aromatics with multiradical characters. © The Royal Society of Chemistry.
  • Item
    Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin
    (São Carlos : Universidade Federal de São Carlos, 2013) Botelho, E.C.; Costa, M.L.; Braga, C.I.; Burkhart, T.; Laukee, B.
    Nanostructured polymer composites have opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential applications in order to improve mechanical and electrical performance in composites with aerospace application. This study focuses on the viscoelastic evaluation of phenolic resin reinforced carbon nanotubes, processed by using two techniques: aqueous-surfactant solution and three roll calender (TRC) process. According to our results a relative small amount of CNTs in a phenolic resin matrix is capable of enhancing the viscoelastic properties significantly and to modify the thermal stability. Also has been observed that when is used TRC process, the incorporation and distribution of CNT into phenolic resin is more effective when compared with aqueous solution dispersion process.