Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Identification of potential precursors for the occurrence of Large-Scale Traveling Ionospheric Disturbances in a case study during September 2017

2020, Ferreira, Arthur Amaral, Borries, Claudia, Xiong, Chao, Borges, Renato Alves, Mielich, Jens, Kouba, Daniel

Traveling Ionospheric Disturbances (TIDs) reflect changes in the ionospheric electron density which are caused by atmospheric gravity waves. These changes in the electron density impact the functionality of different applications such as precise navigation and high-frequency geolocation. The Horizon 2020 project TechTIDE establishes a warning system for the occurrence of TIDs with the motivation to mitigate their impact on communication and navigation applications. This requires the identification of appropriate indicators for the generation of TIDs and for this purpose we investigate potential precursors for the TID occurrence. This paper presents a case study of the double main phase geomagnetic storm, starting from the night of 7th September and lasting until the end of 8th September 2017. Detrended Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) measurements from more than 880 ground stations in Europe was used to identify the occurrence of different types of large scale traveling ionospheric disturbances (LSTIDs) propagating over the European sector. In this case study, LSTIDs were observed more frequently and with higher amplitude during periods of enhanced auroral activity, as indicated by increased electrojet index (IE) from the International Monitor for Auroral Geomagnetic Effects (IMAGE). Our investigation suggests that Joule heating due to the dissipation of Pedersen currents is the main contributor to the excitation of the observed LSTIDs. We observe that the LSTIDs are excited predominantly after strong ionospheric perturbations at high-latitudes. Ionospheric parameters including TEC gradients, the Along Arc TEC Rate (AATR) index and the Rate Of change of TEC index (ROTI) have been analysed for their suitability to serve as a precursor for LSTID occurrence in mid-latitude Europe, aiming for near real-time indication and warning of LSTID activity. The results of the presented case study suggest that the AATR index and TEC gradients are promising candidates for near real-time indication and warning of the LSTIDs occurrence in mid-latitude Europe since they have a close relation to the source mechanisms of LSTIDs during periods of increased auroral activity.

Loading...
Thumbnail Image
Item

First insights on plasma orthodontics - Application of cold atmospheric pressure plasma to enhance the bond strength of orthodontic brackets

2016, Metelmann, Philine H., Quooß, Alexandra, Woedtke, Thomas von, Krey, Karl-Friedrich

Objective: The development of an ideal adhesive system has long been subject of research. Recent studies show that treatment with cold atmospheric pressure plasma (CAP) positively affects the bonding properties of enamel. Conditioning with CAP could therefore improve the mechanical and physical properties of bracket adhesives, e.g. Glass ionomer cement (GIC). Material and methods: Laser-structured brackets (Dentaurum, Ispringen) were bonded onto 60 bovine mandibular incisors using different orthodontic adhesives. For 20 specimens FujiOrthoLC (GC America Corp, Alsip, USA) was used according to manufacturer's instructions. Another 20 specimens received a 60 s CAP-treatment (kINPen med, Neoplas tool, Greifswald, Germany) before bracket bonding, of which 10 were re-moistened before applying FujiOrthoLC and 10 remained dry. Onto 20 specimens, brackets were bonded with the Composite Transbond XT (3M/Unitek, St. Paul, USA) following manufacturer's instructions. The shear bond strength of brackets on the teeth was determined with the universal testing machine Zwick BZ050/TH3A (Zwick, Ulm, Germany). Results: Brackets bonded with FujiOrthoLC in standard method, showed average shear bond strength of 5.58±0.46 MPa. Specimens treated with plasma showed clinically unacceptable adhesion values (re-moistened group: 2.79±0.38 MPa, dry group: 1.01±0.2 MPa). Bonding onto dried out teeth also led to spontaneous bracket losses (4 of 10 specimens). The composite group (Transbond XT) showed clinically acceptable adhesion values (7.9±1.03 MPa). Conclusions: Despite promising potential, surface conditioning with CAP could not improve the adhesive properties of GIC. By contrast, a decrease in shear bond strength was noticed after CAP treatment. Further investigations have to show whether it is possible to increase the retention values ​​of other orthodontic adhesives by CAP application and thus take advantage of positive characteristics and reduce side effects.