Search Results

Now showing 1 - 2 of 2
  • Item
    Small-angle X-ray scattering from GaN nanowires on Si(111): facet truncation rods, facet roughness and Porod's law
    (Oxford [u.a.] : Blackwell, 2021) Kaganer, Vladimir M.; Konovalov, Oleg V.; Fernández-Garrido, Sergio
    Small-angle X-ray scattering from GaN nanowires grown on Si(111) is measured in the grazing-incidence geometry and modelled by means of a Monte Carlo simulation that takes into account the orientational distribution of the faceted nanowires and the roughness of their side facets. It is found that the scattering intensity at large wavevectors does not follow Porod's law I(q) ∝ q-4. The intensity depends on the orientation of the side facets with respect to the incident X-ray beam. It is maximum when the scattering vector is directed along a facet normal, reminiscent of surface truncation rod scattering. At large wavevectors q, the scattering intensity is reduced by surface roughness. A root-mean-square roughness of 0.9 nm, which is the height of just 3-4 atomic steps per micrometre-long facet, already gives rise to a strong intensity reduction. open access.
  • Item
    Effects of methyl terminal and carbon bridging groups ratio on critical properties of porous organosilicate-glass films
    (Basel : MDPI, 2020) Vishnevskiy, Alexey S.; Naumov, Sergej; Seregin, Dmitry S.; Wu, Yu-Hsuan; Chuang, Wei-Tsung; Rasadujjaman, Md.; Zhang, Jing; Leu, Jihperng; Vorotilov, Konstantin A.; Baklanov, Mikhail R.
    Organosilicate glass-based porous low dielectic constant films with different ratios of terminal methyl to bridging organic (methylene, ethylene and 1,4-phenylene) groups are spin-on deposited by using a mixture of alkylenesiloxane with organic bridges and methyltrimethoxysilane, followed by soft baking at 120–200◦ C and curing at 430◦ C. The films’ porosity was controlled by using sacrificial template Brij® L4. Changes of the films’ refractive indices, mechanical properties, k-values, porosity and pore structure versus chemical composition of the film’s matrix are evaluated and compared with methyl-terminated low-k materials. The chemical resistance of the films to annealing in oxygen-containing atmosphere is evaluated by using density functional theory (DFT). It is found that the introduction of bridging groups changes their porosity and pore structure, increases Young’s modulus, but the improvement of mechanical properties happens simultaneously with the increase in the refractive index and k-value. The 1,4-phenylene bridging groups have the strongest impact on the films’ properties. Mechanisms of oxidative degradation of carbon bridges are studied and it is shown that 1,4-phenylene-bridged films have the highest stability. Methylene-and ethylene-bridged films are less stable but methylene-bridged films show slightly higher stability than ethylene-bridged films. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.