Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation of the effective temperature change in Gd-based composite wires assessed by static and pulsed-field magnetic measurements
    (Amsterdam : North-Holland Publ. Co., 2021) Beyer, L.; Weise, B.; Freudenberger, J.; Hufenbach, J.K.; Gottschall, T.; Krautz, M.
    Gd cladded in a seamless 316L austenitic steel tube has been swaged into wires by the powder-in-tube (PIT) technology, resulting in an outer diameter of 1 mm, a wall thickness of approx. 100 µm and a filling factor of around 62 vol%. Such wires provide an advantageous geometry for heat exchangers and have the benefit to protect the Gadolinium, i.e. from corrosion when being in contact with a heat transfer fluid. The magnetocaloric composite has been studied by static and pulsed magnetic-field measurements in order to evaluate the performance of Gd as a core material. By the analysis of magnetization and heat capacity data, the influences of deformation-induced defects on Gadolinium are presented. The subsequent heat treatment at 773 K for 1 h in Ar atmosphere allowed restoring the magnetic properties of the wire after deformation. Data of the pulsed magnetic-field measurements on the Gd-filled PIT-wires and a Gd–core separated from the jacket are presented, with an achievable temperature change of 1.2 K for the wire and 5.2 K for the Gd in 2 T, respectively. A comparison to previously studied La(Fe, Co, Si)13-filled composite wires is included. It indicates that performance losses due to the passive matrix material cannot be overcome only by an increased adiabatic temperature change of the core material, but instead the wire components need to be chosen regarding an optimized heat capacity ratio, as well.
  • Item
    Absorption and photoemission spectroscopy of rare-earth oxypnictides
    (Milton Park : Taylor & Francis, 2009) Kroll, T.; Roth, F.; Koitzsch, A.; Kraus, R.; Batchelor, D.R.; Werner, J.; Behr, G.; Büchner, B.; Knupfer, M.
    The electronic structure of various rare-earth oxypnictides has been investigated by performing Fe L2, 3 x-ray absorption spectroscopy, and Fe 2p and valence band x-ray photoemission spectroscopy. As representative samples the non-superconducting parent compounds LnFeAsO (Ln=La, Ce, Sm and Gd) have been chosen and measured at 25 and 300 K, i.e. below and above the structural and magnetic phase transition at ~150 K. We find no significant change of the electronic structure of the FeAs layers when switching between the different rare-earth ions or when varying the temperature below and above the transition temperatures. Using a simple two-configuration model, we find qualitative agreement with the Fe 2p3/2 core-level spectrum, which allows for a qualitative explanation of the experimental spectral shapes.