Search Results

Now showing 1 - 3 of 3
  • Item
    The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛcDM cosmology
    (Les Ulis : EDP Sciences, 2021) Müller, Oliver; Pawlowski, Marcel S.; Lelli, Federico; Fahrion, Katja; Rejkuba, Marina; Hilker, Michael; Kanehisa, Jamie; Libeskind, Noam; Jerjen, Helmut
    The plane-of-satellites problem is one of the most severe small-scale challenges for the standard Λ cold dark matter (ΛCDM) cosmological model: Several dwarf galaxies around the Milky Way and Andromeda co-orbit in thin, planar structures. A similar case has been identified around the nearby elliptical galaxy Centaurus A (Cen A). In this Letter, we study the satellite system of Cen A, adding twelve new galaxies with line-of-sight velocities from VLT/MUSE observations. We find that 21 out of 28 dwarf galaxies with measured velocities share a coherent motion. Similarly, flattened and coherently moving structures are found only in 0.2% of Cen A analogs in the Illustris-TNG100 cosmological simulation, independently of whether we use its dark-matter-only or hydrodynamical run. These analogs are not co-orbiting, and they arise only by chance projection, thus they are short-lived structures in such simulations. Our findings indicate that the observed co-rotating planes of satellites are a persistent challenge for ΛCDM, which is largely independent from baryon physics. © O. Müller et al. 2021.
  • Item
    A ∼15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS 0335-052E
    (Les Ulis : EDP Sciences, 2023) Herenz, E.C.; Inoue, J.; Salas, H.; Koenigs, B.; Moya-Sierralta, C.; Cannon, J.M.; Hayes, M.; Papaderos, P.; Östlin, G.; Bik, A.; Le Reste, A.; Kusakabe, H.; Monreal-Ibero, A.; Puschnig, J.
    Context. Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Despite seemingly favourable conditions for outflow formation in compact starbursting galaxies, convincing observational evidence for kiloparsec-scale outflows in such systems is scarce. Aims. The onset of kiloparsec-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335-052E was previously not linked to an outflow. In this paper we investigate whether these filaments provide evidence for an outflow. Methods. We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21 cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios of Hβ/Hα and [O ¯III]λ5007/Hα of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase. Results. We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SBHα = 1.5 - 10-18 erg s cm-2 arcsec-2. The filaments exhibit unusual low Hα/Hβ 2.4 and low [Oa ¯III]/Hα ∼ 0.4 - 0.6 typical of diffuse ionised gas. They are spectrally narrow (∼20 km s-1) and exhibit no velocity sub-structure. The filaments extend outwards from the elongated Ha ¯I halo. On small scales, the NHI peak is offset from the main star-forming sites. The morphology and kinematics of Ha ¯I and Ha ¯II reveal how star-formation-driven feedback interacts differently with the ionised and the neutral phase. Conclusions. We reason that the filaments are a large-scale manifestation of star-formation- driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical structure is found to be commensurable with the observations.
  • Item
    Decoding Galactic Merger Histories
    (Basel : MDPI, 2017) Bell, Eric; Monachesi, Antonela; D’Souza, Richard; Harmsen, Benjamin; de Jong, Roelof; Radburn-Smith, David; Bailin, Jeremy; Holwerda, Benne
    Galaxy mergers are expected to influence galaxy properties, yet measurements of individual merger histories are lacking. Models predict that merger histories can be measured using stellar halos and that these halos can be quantified using observations of resolved stars along their minor axis. Such observations reveal that Milky Way-mass galaxies have a wide range of stellar halo properties and show a correlation between their stellar halo masses and metallicities. This correlation agrees with merger-driven models where stellar halos are formed by satellite galaxy disruption. In these models, the largest accreted satellite dominates the stellar halo properties. Consequently, the observed diversity in the stellar halos of MilkyWay-mass galaxies implies a large range in the masses of their largest merger partners. In particular, the Milky Way's low mass halo implies an unusually quiet merger history. We used these measurements to seek predicted correlations between the bulge and central black hole (BH) mass and the mass of the largest merger partner. We found no significant correlations: while some galaxies with large bulges and BHs have large stellar halos and thus experienced a major or minor merger, half have small stellar halos and never experienced a significant merger event. These results indicate that bulge and BH growth is not solely driven by merger-related processes.