Search Results

Now showing 1 - 3 of 3
  • Item
    Toward mixed-element meshing based on restricted Voronoi diagrams
    (Amsterdam [u.a.] : Elsevier, 2014) Pellerin, J.; Lévy, B.; Caumon, G.
    In this paper we propose a method to generate mixed-element meshes (tetrahedra, triangular prisms, square pyramids) for B-Rep models. The vertices, edges, facets, and cells of the final volumetric mesh are determined from the combinatorial analysis of the intersections between the model components and the Voronoi diagram of sites distributed to sample the model. Inside the volumetric regions, Delaunay tetrahedra dual of the Voronoi diagram are built. Where the intersections of the Voronoi cells with the model surfaces have a unique connected component, tetrahedra are modified to fit the input triangulated surfaces. Where these intersections are more complicated, a correspondence between the elements of the Voronoi diagram and the elements of the mixedelement mesh is used to build the final volumetric mesh. The method which was motivated by meshing challenges encountered in geological modeling is demonstrated on several 3D synthetic models of subsurface rock volumes.
  • Item
    A Pronounced Spike in Ocean Productivity Triggered by the Chicxulub Impact
    (Hoboken, NJ : Wiley, 2021) Brugger, Julia; Feulner, Georg; Hofmann, Matthias; Petri, Stefan
    There is increasing evidence linking the mass-extinction event at the Cretaceous-Paleogene boundary to an asteroid impact near Chicxulub, Mexico. Here we use model simulations to explore the combined effect of sulfate aerosols, carbon dioxide and dust from the impact on the oceans and the marine biosphere in the immediate aftermath of the impact. We find a strong temperature decrease, a brief algal bloom caused by nutrients from both the deep ocean and the projectile, and moderate surface ocean acidification. Comparing the modeled longer-term post-impact warming and changes in carbon isotopes with empirical evidence points to a substantial release of carbon from the terrestrial biosphere. Overall, our results shed light on the decades to centuries after the Chicxulub impact which are difficult to resolve with proxy data.
  • Item
    Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory
    (Göttingen : Copernicus Publ., 2017) Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif
    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.