Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

2014, Lee, M.H., Kim, B.S., Kim, D.H., Ott, R.T., Sansoz, F., Eckert, J.

We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in -brass phase reinforced Ni59Zr20 Ti16 Si2 Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

Loading...
Thumbnail Image
Item

Modulated martensite: Why it forms and why it deforms easily

2011, Kaufmann, S., Niemann, R., Thersleff, T., Rößler, U.K., Heczko, O., Buschbeck, J., Holzapfel, B., Schultz, L., Fähler, S.

Diffusionless phase transitions are at the core of the multifunctionality of (magnetic) shape memory alloys, ferroelectrics and multiferroics. Giant strain effects under external fields are obtained in low symmetric modulated martensitic phases. We outline the origin of modulated phases, their connection with tetragonal martensite and consequences owing to their functional properties by analysing the martensitic microstructure of epitaxial Ni–Mn–Ga films from the atomic to the macroscale. Geometrical constraints at an austenite–martensite phase boundary act down to the atomic scale. Hence, a martensitic microstructure of nanotwinned tetragonal martensite can form. Coarsening of twin variants can reduce twin boundary energy, a process we could observe from the atomic to the millimetre scale. Coarsening is a fractal process, proceeding in discrete steps by doubling twin periodicity. The collective defect energy results in a substantial hysteresis, which allows the retention of modulated martensite as a metastable phase at room temperature. In this metastable state, elastic energy is released by the formation of a 'twins within twins' microstructure that can be observed from the nanometre to the millimetre scale. This hierarchical twinning results in mesoscopic twin boundaries. Our analysis indicates that mesoscopic boundaries are broad and diffuse, in contrast to the common atomically sharp twin boundaries of tetragonal martensite. We suggest that the observed extraordinarily high mobility of such mesoscopic twin boundaries originates from their diffuse nature that renders pinning by atomistic point defects ineffective.