Search Results

Now showing 1 - 5 of 5
  • Item
    Water footprint analysis for the assessment of milk production in Brandenburg (Germany)
    (München : European Geopyhsical Union, 2010) Drastig, K.; Prochnow, A.; Kraatz, S.; Klauss, H.; Plöchl, M.
    The working group "Adaptation to Climate Change" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is introduced. This group calculates the water footprint for agricultural processes and farms, distinguished into green water footprint, blue water footprint, and dilution water footprint. The green and blue water demand of a dairy farm plays a pivotal role in the regional water balance. Considering already existing and forthcoming climate change effects there is a need to determine the water cycle in the field and in housing for process chain optimisation for the adaptation to an expected increasing water scarcity. Resulting investments to boost water productivity and to improve water use efficiency in milk production are two pathways to adapt to climate change effects. In this paper the calculation of blue water demand for dairy farming in Brandenburg (Germany) is presented. The water used for feeding, milk processing, and servicing of cows over the time period of ten years was assessed in our study. The preliminary results of the calculation of the direct blue water footprint shows a decreasing water demand in the dairy production from the year 1999 with 5.98×109 L/yr to a water demand of 5.00×109 L/yr in the year 2008 in Brandenburg because of decreasing animal numbers and an improved average milk yield per cow. Improved feeding practices and shifted breeding to greater-volume producing Holstein-Friesian cow allow the production of milk in a more water sustainable way. The mean blue water consumption for the production of 1 kg milk in the time period between 1999 to 2008 was 3.94±0.29 L. The main part of the consumed water seems to stem from indirect used green water for the production of feed for the cows.
  • Item
    Agricultural Water Management in Brandenburg
    (Berlin : Gesellschaft für Erdkunde, 2011) Drastig, Katrin; Prochnow, Annette; Baumecker, Michael; Berg, Werner; Brunsch, Reiner
    The present study explores whether regional water resources can be used more efficiently by Brandenburg’s agricultural systems. A systematic analysis of measures to raise the water efficiency follows the description of agriculture in Brandenburg today. Brandenburg’s agricultural systems are separated into three sections: soils, plant production and livestock farming. Within these sections measures to increase water efficiency are listed and analysed with reference to five objective criteria for raising water use efficiency. In the soil section the measures soil tillage and humus conservation management are assigned to the criteria. The following fields in the plant production section are similarly investigated: breeding, seeding, fertilisation, tactically chosen crops, avoidance of competition by herbicide use and efficient irrigation practices as well as watersaving storage and cleaning of field crops. In livestock farming the supply of drinking water and cleaning and cooling processes are analysed. In view of the complexity of the agricultural farming systems in Brandenburg, general measures to raise water use efficiency could not be derived. Sitespecific tillage practices and crop patterns adjusted to the recent weather conditions may reflect the specific diversity of Brandenburg more efficiently.
  • Item
    Research data management in agricultural sciences in Germany: We are not yet where we want to be
    (San Francisco, California, US : PLOS, 2022) Senft, Matthias; Stahl, Ulrike; Svoboda, Nikolai
    To meet the future challenges and foster integrated and holistic research approaches in agricultural sciences, new and sustainable methods in research data management (RDM) are needed. The involvement of scientific users is a critical success factor for their development. We conducted an online survey in 2020 among different user groups in agricultural sciences about their RDM practices and needs. In total, the questionnaire contained 52 questions on information about produced and (re-)used data, data quality aspects, information about the use of standards, publication practices and legal aspects of agricultural research data, the current situation in RDM in regards to awareness, consulting and curricula as well as needs of the agricultural community in respect to future developments. We received 196 (partially) completed questionnaires from data providers, data users, infrastructure and information service providers. In addition to the diversity in the research data landscape of agricultural sciences in Germany, the study reveals challenges, deficits and uncertainties in handling research data in agricultural sciences standing in the way of access and efficient reuse of valuable research data. However, the study also suggests and discusses potential solutions to enhance data publications, facilitate and secure data re-use, ensure data quality and develop services (i.e. training, support and bundling services). Therefore, our research article provides the basis for the development of common RDM, future infrastructures and services needed to foster the cultural change in handling research data across agricultural sciences in Germany and beyond.
  • Item
    Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    (San Francisco, Ca. : PLOS, 2019) Germer, Sonja; Kleidon, Axel
    The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials. © 2019 Germer, Kleidon. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    Quantity- and Quality-Based Farm Water Productivity in Wine Production: Case Studies in Germany
    (Basel : MDPI, 2017-2-1) Peth, Denise; Drastig, Katrin; Prochnow, Annette
    The German wine sector has encountered new challenges in water management recently. To manage water resources responsibly, it is necessary to understand the relationship between the input of water and the output of wine, in terms of quantity and quality. The objectives of this study are to examine water use at the farm scale at three German wineries in Rhenish Hesse, and to develop and apply, for the first time, a quality-based indicator. Water use is analyzed in terms of wine production and wine-making over three years. After the spatial and temporal boundaries of the wineries and the water flows are defined, the farm water productivity indicator is calculated to assess water use at the winery scale. Farm water productivity is calculated using the AgroHyd Farmmodel modeling software. Average productivity on a quantity basis is 3.91 L wine per m3 of water. Productivity on a quality basis is 329.24 Oechsle per m3 of water. Water input from transpiration for wine production accounts for 99.4%-99.7% of total water input in the wineries, and, because irrigation is not used, precipitation is the sole source of transpired water. Future studies should use both quality-based and mass-based indicators of productivity. © 2017 by the authors.